$a = 1$ અને $b = 4$ લઈ વિધેય $f(x)=x^{2}-4 x-3$ માટે $[a, b]$ પર મધ્યકમાન પ્રમેય ચકાસો.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The given function is $f(x)=x^{2}-4 x-3$

$f,$ being a polynomial function, is a continuous in $[1,4]$ and is differentiable in $(1,4)$ whose derivative is $2 x-4$

$f(1)=1^{2}-4 \times 1-3=6, f(4)=4^{2}-4 \times 4-3=-3$

$\therefore \frac{f(b)-f(a)}{b-a}=\frac{f(4)-f(1)}{4-1}=\frac{-3-(-6)}{3}=\frac{3}{3}=1$

Mean Value Theorem states that there is a point $c \in(1,4)$ such that

$f^{\prime}(c)=1$ $f^{\prime}(c)=1$

$\Rightarrow 2 c-4=1$

$\Rightarrow c=\frac{5}{2},$ where $c=\frac{5}{2} \in(1,4)$

Hence, Mean Value Theorem is verified foer the given function.

Similar Questions

ધારો કે  વિધેય $f$ એ  $[\mathrm{a}, \mathrm{b}]$ પર સતત અને $(a, b) $ પર દ્રીતીય વિકલનીય છે. જો દરેક $x \in(a, b)$ ; $f^{\prime}(\mathrm{x})>0$ અને  $f^{\prime \prime}(\mathrm{x})<0,$ હોય તો કોઈક  $\mathrm{c} \in(\mathrm{a}, \mathrm{b})$ ;  $\frac{f(\mathrm{c})-f(\mathrm{a})}{f(\mathrm{b})-f(\mathrm{c})}$  $>$ 

  • [JEE MAIN 2020]

 વિધેય $f(x)=x^{3}-a x^{2}+b x-4, x \in[1,2]$ માટે $f^{\prime}\left(\frac{4}{3}\right)=0$ સાથે રોલનું પ્રમેટ પળાતું હોય, તો કમયુક્ત જોડ $(a, b) = ...........$

  • [JEE MAIN 2021]

દ્રીઘાત સમીકરણ ${\text{ a}}{{\text{x}}^{\text{2}}}{\text{  +  bx  +  c  =  0 }}$ સ્વીકારો જ્યાં, $2a\,\, + \,\,3b\,\, + \,\,6c\,\, = \,\,0$ અને ${\text{g(x)}}\,\, = \,\,{\text{a}}\,\,\frac{{{{\text{x}}^{\text{3}}}}}{3}\,\, + \,\,{\text{b}}\,\frac{{{{\text{x}}^{\text{2}}}}}{{\text{2}}}\,\, + \,\,{\text{cx}}$ લો. 

વિધાન $- 1 : (0, 1)$  અંતરાલમાં દ્વિઘાત સમીકરણના ઓછામાં ઓછું એક બીજ છે.

વિધાન $- 2 : [0, 1]$ અંતરાલમાં વિધેય $g(x)$  માટે રોલનો પ્રમેય લાગુ પાડી શકાય.

ધારો કે $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ અચળ ન હોય તેવો દ્રિવિકલનીય વિધેય છે જ્યાં $\mathrm{g}\left(\frac{1}{2}\right)=\mathrm{g}\left(\frac{3}{2}\right)$. જો વાસ્તવિક મૂલ્યવાળું વિધેય $F$ એ $f(x)=\frac{1}{2}[g(x)+\mathrm{g}(2-x)]$ ] પ્રમાણે  વ્યાખ્યાયિત થાય, તો: 

  • [JEE MAIN 2024]

વિધેય $f(x) = {e^{ - 2x}}sin 2x$ એ $\left( {0,{\pi \over 2}} \right)$ માં આપલે છે. વાસ્તવિક સંખ્યા $c \in \left( {0,{\pi \over 2}} \right)\,,$ મેળવો કે જેથી $f'\,(c) = 0$ માટે રોલના પ્રમેયનું પાલન કરે છે.