In which of the following functions is Rolle's theorem applicable ?

  • A

    $f(x) = \left\{ \begin{array}{l}
    x,\,\,\,\,\,\,\,0 \le x < 1\\
    0,\,\,\,\,\,\,\,x = 0\,\,\,\,\,\,
    \end{array} \right.on\,\,\left[ {0,1} \right]$

  • B

    $f(x) = \left\{ \begin{array}{l}
    \frac{{\sin x}}{x},\,\,\,\,\,\,\, - \pi  \le x < 0\\
    0,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 0\,\,\,\,\,\,
    \end{array} \right.on\,\,\left[ { - \pi ,0} \right]$

  • C

    $f(x) = \frac{{{x^2} - x - 6}}{{x - 1}}\,\,\,\,\,on\left[ { - 2,3} \right]$

  • D

    $f(x) = \left\{ \begin{array}{l}
    \frac{{{x^3} - 2{x^2} + 5x + 6}}{{x - 1}},\,\,\,\,if\,\,x \ne 0\,\,\,\,\,\,\\
     - 6,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,if\,\,x = 1\,\,\,\,\,\,\,\,\,\,\,\,\
    \end{array} \right.on\left[ {-2,3} \right]$

Similar Questions

Let $\mathrm{f}$ be any continuous function on $[0,2]$ and twice differentiable on $(0,2)$. If $\mathrm{f}(0)=0, \mathrm{f}(1)=1$ and $f(2)=2$, then

  • [JEE MAIN 2021]

Let $f :[2,4] \rightarrow R$ be a differentiable function such that $\left(x \log _e x\right) f^{\prime}(x)+\left(\log _e x\right) f(x)+f(x) \geq 1$, $x \in[2,4]$ with $f(2)=\frac{1}{2}$ and $f(4)=\frac{1}{4}$.

Consider the following two statements:

$(A): f(x) \leq 1$, for all $x \in[2,4]$

$(B)$ : $f(x) \geq \frac{1}{8}$, for all $x \in[2,4]$

Then,

  • [JEE MAIN 2023]

Given $f (x) =4\,\, - \,\,{\left( {\frac{1}{2}\, - \,x} \right)^{2/3}}\,$ $g (x) = \left\{ \begin{array}{l}\frac{{\tan \,\,[x]}}{x}\,\,\,\,,\,\,x \ne \,0\\1\,\,\,\,\,\,\,\,\,\,\,\,\,,\,\,\,x\, = \,0\end{array} \right.$

$h (x) = \{x\}$   $k (x) = {5^{{{\log }_2}(x\, + \,3)}}$then in $[0, 1]$ Lagranges Mean Value Theorem is $NOT$ applicable to

lf Rolle's theorem holds for the function $f(x) =2x^3 + bx^2 + cx, x \in [-1, 1],$  at the point $x = \frac {1}{2},$ then $2b+ c$ equals

  • [JEE MAIN 2015]

Let $f(x)$ be a function continuous on $[1,2]$ and differentiable on $(1,2)$ satisfying
$f(1) = 2, f(2) = 3$ and $f'(x) \geq 1 \forall x \in (1,2)$.Define $g(x)=\int\limits_1^x {f(t)\,dt\,\forall \,x\, \in [1,2]} $ then the greatest value of $g(x)$ on $[1,2]$ is-