In which of the following functions is Rolle's theorem applicable ?
$f(x) = \left\{ \begin{array}{l}
x,\,\,\,\,\,\,\,0 \le x < 1\\
0,\,\,\,\,\,\,\,x = 0\,\,\,\,\,\,
\end{array} \right.on\,\,\left[ {0,1} \right]$
$f(x) = \left\{ \begin{array}{l}
\frac{{\sin x}}{x},\,\,\,\,\,\,\, - \pi \le x < 0\\
0,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 0\,\,\,\,\,\,
\end{array} \right.on\,\,\left[ { - \pi ,0} \right]$
$f(x) = \frac{{{x^2} - x - 6}}{{x - 1}}\,\,\,\,\,on\left[ { - 2,3} \right]$
$f(x) = \left\{ \begin{array}{l}
\frac{{{x^3} - 2{x^2} + 5x + 6}}{{x - 1}},\,\,\,\,if\,\,x \ne 0\,\,\,\,\,\,\\
- 6,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,if\,\,x = 1\,\,\,\,\,\,\,\,\,\,\,\,\
\end{array} \right.on\left[ {-2,3} \right]$
Let $\mathrm{f}$ be any continuous function on $[0,2]$ and twice differentiable on $(0,2)$. If $\mathrm{f}(0)=0, \mathrm{f}(1)=1$ and $f(2)=2$, then
Let $f :[2,4] \rightarrow R$ be a differentiable function such that $\left(x \log _e x\right) f^{\prime}(x)+\left(\log _e x\right) f(x)+f(x) \geq 1$, $x \in[2,4]$ with $f(2)=\frac{1}{2}$ and $f(4)=\frac{1}{4}$.
Consider the following two statements:
$(A): f(x) \leq 1$, for all $x \in[2,4]$
$(B)$ : $f(x) \geq \frac{1}{8}$, for all $x \in[2,4]$
Then,
Given $f (x) =4\,\, - \,\,{\left( {\frac{1}{2}\, - \,x} \right)^{2/3}}\,$ $g (x) = \left\{ \begin{array}{l}\frac{{\tan \,\,[x]}}{x}\,\,\,\,,\,\,x \ne \,0\\1\,\,\,\,\,\,\,\,\,\,\,\,\,,\,\,\,x\, = \,0\end{array} \right.$
$h (x) = \{x\}$ $k (x) = {5^{{{\log }_2}(x\, + \,3)}}$then in $[0, 1]$ Lagranges Mean Value Theorem is $NOT$ applicable to
lf Rolle's theorem holds for the function $f(x) =2x^3 + bx^2 + cx, x \in [-1, 1],$ at the point $x = \frac {1}{2},$ then $2b+ c$ equals
Let $f(x)$ be a function continuous on $[1,2]$ and differentiable on $(1,2)$ satisfying
$f(1) = 2, f(2) = 3$ and $f'(x) \geq 1 \forall x \in (1,2)$.Define $g(x)=\int\limits_1^x {f(t)\,dt\,\forall \,x\, \in [1,2]} $ then the greatest value of $g(x)$ on $[1,2]$ is-