Insert $6$ numbers between $3$ and $24$ such that the resulting sequence is an $A.P.$
Let $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}$ and $A_{6}$ be six numbers between $3$ and $24$ such that $3, A _{1}, A _{2}, A _{3}, A _{4}, A _{5}, A _{6}, 24$ are in $A.P.$ Here, $a=3, b=24, n=8$
Therefore, $24=3+(8-1) d,$ so that $d=3$
Thus ${A_1} = a + d = 3 + 3 = 6;\quad $
${A_2} = a + 2d = 3 + 2 \times 3 = 9$
${A_3} = a + 3d = 3 + 3 \times 3 = 12;\quad $
${A_4} = a + 4d = 3 + 4 \times 3 = 15$
${A_5} = a + 5d = 3 + 5 \times 3 = 18;\quad $
${A_6} = a + 6d = 3 + 6 \times 3 = 21$
Hence, six numbers between $3$ and $24$ are $6,9,12,15,18$ and $21$
The difference between any two consecutive interior angles of a polygon is $5^{\circ}$ If the smallest angle is $120^{\circ},$ find the number of the sides of the polygon.
Find the sum of all natural numbers lying between $100$ and $1000,$ which are multiples of $5 .$
Different $A.P.$'s are constructed with the first term $100$,the last term $199$,And integral common differences. The sum of the common differences of all such, $A.P$'s having at least $3$ terms and at most $33$ terms is.
Write the first five terms of the sequences whose $n^{t h}$ term is $a_{n}=\frac{2 n-3}{6}$
Suppose we have an arithmetic progression $a_1, a_2, \ldots a_n, \ldots$ with $a_1=1, a_2-a_1=5$. The median of the finite sequence $a_1, a_2, \ldots, a_k$, where $a_k \leq 2021$ and $a_{k+1} > 2021$ is