ऐसी $6$ संख्याएँ ज्ञात कीजिए जिनको $3$ और $24$ के बीच रखने पर प्राप्त अनुक्रम एक समांतर श्रेणी बन जाए।
Let $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}$ and $A_{6}$ be six numbers between $3$ and $24$ such that $3, A _{1}, A _{2}, A _{3}, A _{4}, A _{5}, A _{6}, 24$ are in $A.P.$ Here, $a=3, b=24, n=8$
Therefore, $24=3+(8-1) d,$ so that $d=3$
Thus ${A_1} = a + d = 3 + 3 = 6;\quad $
${A_2} = a + 2d = 3 + 2 \times 3 = 9$
${A_3} = a + 3d = 3 + 3 \times 3 = 12;\quad $
${A_4} = a + 4d = 3 + 4 \times 3 = 15$
${A_5} = a + 5d = 3 + 5 \times 3 = 18;\quad $
${A_6} = a + 6d = 3 + 6 \times 3 = 21$
Hence, six numbers between $3$ and $24$ are $6,9,12,15,18$ and $21$
यदि $n$ विषम या सम हो,तो श्रेणी $1 - 2 + 3 - 4 + 5 - 6 + ......$ के $n$ पदों का योग होगा
चार संख्यायें समान्तर श्रेणी में हैं। यदि प्रथम तथा अंतिम पदों का योग $8$ है तथा दोनों मध्य पदों का गुणनफल $15$ है, तो श्रेणी की न्यूनतम संख्या होगी
यदि किसी समांतर श्रेणी के प्रथम $p$ पदों का योग, प्रथम $q$ पदों के योगफल के बराबर हो तो प्रथम $(p+q)$ पदों का योगफल ज्ञात कीजिए।
यदि $2x,\;x + 8,\;3x + 1$ समान्तर श्रेणी में हैं, तो $x$ का मान होगा
पाँच संख्याएँ समान्तर श्रेढी में हैं, जिनका योगफल $25$ तथा गुणनफल $2520$ हैं यदि इन पाँच संख्याओं में से एक $-\frac{1}{2}$ है, तो इनमें सबसे बडी संख्या है