Insert five numbers between $8$ and $26$ such that resulting sequence is an $A.P.$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $A_{1}, A_{2}, A_{3}, A_{4}$ and $A_{5}$ be five numbers between $8$ and $26$ such that $8, A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, 26$ is an $A.P.$

Here, $a=8, b=26, n=7$

Therefore, $26=8+(7-1) d$

$\Rightarrow 6 d=26-8=18$

$\Rightarrow d=3$

$A_{1}=a+d=8+3=11$

$A_{2}=a+2 d=8+2 \times 3=8+6=14$

$A_{3}=a+3 d=8+3 \times 3=8+9=17$

$A_{4}=a+4 d=8+4 \times 3=8+12=20$

$A_{5}=a+5 d=8+5 \times 3=8+15=23$

Thus, the required five numbers between $8$ and $26$ are $11,14,17,20$ and $23 .$

Similar Questions

The ${n^{th}}$ term of an $A.P.$ is $3n - 1$.Choose from the following the sum of its first five terms

If the sum of three numbers in $A.P.,$ is $24$ and their product is $440,$ find the numbers.

Jairam purchased a house in Rs. $15000$ and paid Rs. $5000$ at once. Rest money he promised to pay in annual installment of Rs. $1000$ with $10\%$ per annum interest. How much money is to be paid by Jairam $\mathrm{Rs.}$ ...................

Given an $A.P.$ whose terms are all positive integers. The sum of its first nine terms is greater than $200$ and less than $220$. If the second term in it is $12$, then its $4^{th}$ term is

  • [JEE MAIN 2014]

Let the sequence $a_{n}$ be defined as follows:

${a_1} = 1,{a_n} = {a_{n - 1}} + 2$ for $n\, \ge \,2$

Find first five terms and write corresponding series.