Insert five numbers between $8$ and $26$ such that resulting sequence is an $A.P.$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $A_{1}, A_{2}, A_{3}, A_{4}$ and $A_{5}$ be five numbers between $8$ and $26$ such that $8, A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, 26$ is an $A.P.$

Here, $a=8, b=26, n=7$

Therefore, $26=8+(7-1) d$

$\Rightarrow 6 d=26-8=18$

$\Rightarrow d=3$

$A_{1}=a+d=8+3=11$

$A_{2}=a+2 d=8+2 \times 3=8+6=14$

$A_{3}=a+3 d=8+3 \times 3=8+9=17$

$A_{4}=a+4 d=8+4 \times 3=8+12=20$

$A_{5}=a+5 d=8+5 \times 3=8+15=23$

Thus, the required five numbers between $8$ and $26$ are $11,14,17,20$ and $23 .$

Similar Questions

If the sum of the first $n$ terms of the series $\sqrt 3  + \sqrt {75}  + \sqrt {243}  + \sqrt {507}  + ......$ is $435\sqrt 3 $ , then $n$ equals

  • [JEE MAIN 2017]

If $\frac{a}{b},\frac{b}{c},\frac{c}{a}$ are in $H.P.$, then

If the sum of the first $n$ terms of a series be $5{n^2} + 2n$, then its second term is

The sum of $n$ arithmetic means between $a$ and $b$, is

Let ${T_r}$ be the ${r^{th}}$ term of an $A.P.$ for $r = 1,\;2,\;3,....$. If for some positive integers $m,\;n$ we have ${T_m} = \frac{1}{n}$ and ${T_n} = \frac{1}{m}$, then ${T_{mn}}$ equals

  • [IIT 1998]