The sums of $n$ terms of two arithmetic progressions are in the ratio $5 n+4: 9 n+6 .$ Find the ratio of their $18^{\text {th }}$ terms.
Let $a_{1}, a_{2}$ and $d_{1}, d_{2}$ be the first terms and the common difference of the first and second arithmetic progression respectively.
According to the given condition,
$\frac{{{\rm{ Sum }}\,\,{\rm{of }}\,\,n\,\,{\rm{ terms }}\,\,{\rm{of}}\,\,{\rm{ first}}\,\,{\rm{ A}}{\rm{.P}}{\rm{. }}}}{{{\rm{ Sum}}\,\,{\rm{ of }}\,\,n{\rm{ }}\,\,{\rm{terms }}\,\,{\rm{of }}\,\,{\rm{second}}\,\,{\rm{ A}}{\rm{.P}}{\rm{. }}}} = \frac{{5n + 4}}{{9n + 6}}$
$\Rightarrow \frac{\frac{n}{2}\left[2 a_{1}+(n-1) d_{1}\right]}{\frac{n}{2}\left[2 a_{2}+(n-1) d_{2}\right]}=\frac{5 n+4}{9 n+6}$
$\Rightarrow \frac{2 a_{1}+(n-1) d_{1}}{2 a_{2}+(n-1) d_{2}}=\frac{5 n+4}{9 n+5}$ ..........$(1)$
Substituting $n=35$ in $(1),$ we obtain
$\frac{2 a_{1}+34 d_{1}}{2 a_{2}+34 d_{2}}=\frac{5(35)+4}{9(35)+6}$
$\Rightarrow \frac{a_{1}+17 d_{1}}{a_{2}+17 d_{2}}=\frac{179}{321}$ ...........$(2)$
$\frac{{{{18}^{th}}\,\,{\rm{ term}}\,\,{\rm{of}}\,\,{\rm{ first }}}}{{{{18}^{th}}\,\,{\rm{ term }}\,\,{\rm{of }}\,\,{\rm{second}}\,\,{\rm{ A}}{\rm{.P}}{\rm{. }}}} = \frac{{{a_1} + 17{d_1}}}{{{a_2} + 17{d_2}}}$ ............$(3)$
From $(2)$ and $(3),$ we obtain
$\frac{{{{18}^{{\rm{th }}}}\,\,{\rm{ term}}\,\,{\rm{ of }}\,\,{\rm{first }}}}{{{{18}^{{\rm{th }}}}\,\,{\rm{ term }}\,\,{\rm{of}}\,\,{\rm{ second }}\,\,{\rm{A}}{\rm{.P}}{\rm{. }}}} = \frac{{179}}{{321}}$
Thus, the ratio of $18^{\text {th }}$ term of both the $A.P.$s is $179: 321 .$
If the sum of three numbers in $A.P.,$ is $24$ and their product is $440,$ find the numbers.
Let ${a_1},{a_2},\;.\;.\;.\;.,{a_{49}}$ be in $A.P.$ such that $\mathop \sum \limits_{k = 0}^{12} {a_{4k + 1}} = 416$ and ${a_9} + {a_{43}} = 66$. If $a_1^2 + a_2^2 + \ldots + a_{17}^2 = 140m,$ then $m = \;\;..\;.\;.\;.\;$
Let $a_1, a_2, a_3, \ldots, a_{100}$ be an arithmetic progression with $a_1=3$ and $S_p=\sum_{i=1}^p a_i, 1 \leq p \leq 100$. For any integer $n$ with $1 \leq n \leq 20$, let $m=5 n$. If $\frac{S_{m m}}{S_n}$ does not depend on $n$, then $a_2$ is
Let ${S_1},{S_2},......,{S_{101}}$ be the consecutive terms of an $A.P$ . If $\frac{1}{{{S_1}{S_2}}} + \frac{1}{{{S_2}{S_3}}} + .... + \frac{1}{{{S_{100}}{S_{101}}}} = \frac{1}{6}$ and ${S_1} + {S_{101}} = 50$ , then $\left| {{S_1} - {S_{101}}} \right|$ is equal to
If $x_1 , x_2 , ..... , x_n$ and $\frac{1}{{{h_1}}},\frac{1}{{{h^2}}},......\frac{1}{{{h_n}}}$ are two $A.P' s$ such that $x_3 = h_2 = 8$ and $x_8 = h_7 = 20$, then $x_5. h_{10}$ equals