Least integer in the range of $f(x)$=$\sqrt {(x + 4)(1 - x)} - {\log _2}x$ is
$-2$
$-1$
$0$
$1$
$f(x)=\sqrt{(x+4)(1-x)}+\log _{1 / 2} x$
$\because$ $'f'$ is decreasing
minimum value is $f(1)=0.$
Let $\mathrm{f}: N \rightarrow N$ be a function such that $\mathrm{f}(\mathrm{m}+\mathrm{n})=\mathrm{f}(\mathrm{m})+\mathrm{f}(\mathrm{n})$ for every $\mathrm{m}, \mathrm{n} \in N$. If $\mathrm{f}(6)=18$ then $\mathrm{f}(2) \cdot \mathrm{f}(3)$ is equal to :
Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be defined as
$f(x+y)+f(x-y)=2 f(x) f(y), f\left(\frac{1}{2}\right)=-1 .$ Then, the value of $\sum_{\mathrm{k}=1}^{20} \frac{1}{\sin (\mathrm{k}) \sin (\mathrm{k}+\mathrm{f}(\mathrm{k}))}$ is equal to:
Let $f(x)=a x^{2}+b x+c$ be such that $f(1)=3, f(-2)$ $=\lambda$ and $f (3)=4$. If $f (0)+ f (1)+ f (-2)+ f (3)=14$, then $\lambda$ is equal to$…$
The graph of $y = f(x)$ is shown then number of solutions of the equation $f(f(x)) =2$ is
If $f(x) = \cos (\log x)$, then $f(x)f(y) – \frac{1}{2}[f(x/y) + f(xy)] = $
Confusing about what to choose? Our team will schedule a demo shortly.