If $f(x) = \cos (\log x)$, then $f(x)f(y) - \frac{1}{2}[f(x/y) + f(xy)] = $

  • [IIT 1983]
  • A

    $ - 1$

  • B

    $\frac{1}{2}$

  • C

    $ - 2$

  • D

    None of these

Similar Questions

The range of $f(x) = [\cos x + \sin x]$ is (Where $[.]$ is $G.I.F.$)

Let $A= \{1, 2, 3, 4\}$ and $R : A \to A$ be the relation defined by $R = \{ (1, 1), (2, 3), (3, 4), ( 4, 2) \}$. The correct statement is

  • [JEE MAIN 2013]

If $f(x)=\frac{2^{2 x}}{2^{2 x}+2}, x \in R$ then $f\left(\frac{1}{2023}\right)+f\left(\frac{2}{2023}\right)+\ldots \ldots . .+f\left(\frac{2022}{2023}\right)$ is equal to

  • [JEE MAIN 2023]

The number of one-one function $f :\{ a , b , c , d \} \rightarrow$ $\{0,1,2, \ldots ., 10\}$ such that $2 f(a)-f(b)+3 f(c)+$ $f ( d )=0$ is

  • [JEE MAIN 2022]

If $f(x) = \frac{1}{{\sqrt {x + 2\sqrt {2x - 4} } }} + \frac{1}{{\sqrt {x - 2\sqrt {2x - 4} } }}$ for $x > 2$, then $f(11) = $