If $f(x) = \cos (\log x)$, then $f(x)f(y) - \frac{1}{2}[f(x/y) + f(xy)] = $

  • [IIT 1983]
  • A

    $ - 1$

  • B

    $\frac{1}{2}$

  • C

    $ - 2$

  • D

    None of these

Similar Questions

If the domain of the function $f(\mathrm{x})=\frac{\cos ^{-1} \sqrt{x^{2}-x+1}}{\sqrt{\sin ^{-1}\left(\frac{2 x-1}{2}\right)}}$ is the interval $(\alpha, \beta]$, then $\alpha+\beta$ is equal to:

  • [JEE MAIN 2021]

Show that the function $f: N \rightarrow N ,$ given by $f(1)=f(2)=1$ and $f(x)=x-1$ for every $x>2,$ is onto but not one-one.

Show that the function $f : R \rightarrow R$ given by $f ( x )= x ^{3}$ is injective.

The number of one-one function $f :\{ a , b , c , d \} \rightarrow$ $\{0,1,2, \ldots ., 10\}$ such that $2 f(a)-f(b)+3 f(c)+$ $f ( d )=0$ is

  • [JEE MAIN 2022]

Let $\phi (x) = (x) + {2^{\log _x^3}} - {3^{\log _x^2}}$ then