3-1.Vectors
hard

$\vec A\, = \,(\hat i\, + \,\hat j)$ અને $\vec B\, = \,(2\hat i\, - \,\hat j)$ આપેલ છે. સમતલ સદિશ $\vec C$ નું મૂલ્ય શેના વડે આપવામાં આવે, કે જેથી $\vec A\cdot \vec C\, = \,\vec B\cdot \vec C\, = \vec A\cdot \vec B$ થાય?

A

$\sqrt {\frac{5}{9}} $

B

$\sqrt {\frac{10}{9}} $

C

$\sqrt {\frac{20}{9}} $

D

$\sqrt {\frac{9}{12}} $

(JEE MAIN-2018)

Solution

$\begin{array}{l}
If\,\vec C = a\hat i + b\hat j\,then\,\vec A.\vec C = \vec A.\vec B\\
a + b = 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,…\left( i \right)\\
\vec B.\vec C = \vec A.\vec B\\
2a – b = 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,…\left( {ii} \right)\\
Solving\,equation\,\left( i \right)\,and\,\left( {ii} \right)\,\,we\,get\\
a = \frac{1}{3},\,b = \frac{2}{3}\\
Magnitude\,of\,coplanar\,vector,\\
\left| {\vec C} \right| = \sqrt {\frac{1}{9} + \frac{4}{9}}  = \sqrt {\frac{5}{9}} 
\end{array}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.