माना $A =\left\{x_{1}, x_{2}, \ldots, x_{7}\right\}$ तथा $B =\left\{y_{1}, y_{2}, y_{3}\right\}$ ऐसे दो समुच्चय हैं जिनमें क्रमशः सात तथा तीन विभित्र अवयव हैं ; तो ऐसे फलनों $f: A \rightarrow B$ की कुल संख्या, जो कि आच्छादक हैं, यदि $A$ में ऐसे ठीक तीन $x$ अवयव हैं जिनके लिए $f(x)=y_{2}$ है
$14.{}^7{C_3}$
$16.{}^7{C_3}$
$14.{}^7{C_2}$
$12.{}^7{C_2}$
$f(x,\;y) = \frac{1}{{x + y}}$ एक समघात फलन है, जिसकी घात है
मान लीजिए कि $P(x)$ बास्तविक गुणांकों से बना एक बहुपद $(polynomial)$ है, जो सभी $x \in[0, \pi / 2]$ के लिए $P\left(\sin ^2 x\right)=$ $P\left(\cos ^2 x\right)$ को संतुष्ट करता है. निम्न वाक्यों को पढ़ें.
$I$. $P(x)$ एक सम-फलन $(even\,function)$ है.
$II$. $P(x)$ को $(2 x-1)^2$ के बहुपद के रूप में व्यक्त किया जा सकता है.
$III$. $P(x)$ सम-घात का यहुपद है.
इनमें:
माना $\mathrm{A}=\{1,2,3,5,8,9\}$ है। तब संभव फलनों $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{A}$ की संख्या ताकि प्रत्येक $\mathrm{m}, \mathrm{n} \in \mathrm{A}$ के लिये $\mathrm{f}(\mathrm{m} \cdot \mathrm{n})=\mathrm{f}(\mathrm{m}) \cdot \mathrm{f}(\mathrm{n})$ है जिसमें $\mathrm{m} \cdot \mathrm{n} \in \mathrm{A}$ है, होगी_____________.
मान लीजिए कि $f(x)=\left\{\begin{array}{l} x \sin \left(\frac{1}{x}\right) \text { when } x \neq 0 \\ 1 \text { when } x=0 \end{array}\right\}$ और $A=\{x \in R : f(x)=1\}$. तब $A$ में क्या है ?
दी गयी श्रेणी का मान होगा $\sum \limits_{n=0}^{1947} \frac{1}{2^n+\sqrt{2^{1947}}}$