एक वास्तविक फलन $f(x)$, $f(x - y) = f(x)f(y) - f(a - x)f(a + y)$ फलन समीकरण को संतुष्ट करता है, यहाँ $a$ दिया गया अचर है व $f(0) = 1$, तब $f(2a - x) = $
$f(a) + f(a - x)$
$f( - x)$
$ - f(x)$
$f(x)$
माना $a, b, c \in R$ यदि $f(x)=a x^{2}+b x+c$ ऐसा है कि $a+b+c=3$ है तथा सभी $x, y \in R$ के लिए
$f(x+y)=f(x)+f(y)+x y$ है, तो $\sum_{n=1}^{10} f(n)$ बराबर है:
यदि फलन $f( x )=\frac{\cos ^{-1} \sqrt{ x ^{2}- x +1}}{\sqrt{\sin ^{-1}\left(\frac{2 x -1}{2}\right)}}$ का प्रान्त, अन्तराल $(\alpha, \beta]$ है, तो $\alpha+\beta$ बराबर है -
यदि $x,\;y \in N$ के सभी मानों के लिये $f(x + y) = f(x)f(y)$ को सन्तुष्ट करने वाला एक फलन $f(x)$ इस प्रकार है कि $f(1) = 3$ तथा $\sum\limits_{x = 1}^n {f(x) = 120} $, तब $n$ का मान है
$\mathrm{f}(\mathrm{n})+\frac{1}{\mathrm{n}} \mathrm{f}(\mathrm{n}+1)=1, \forall \mathrm{n} \in\{1,2,3\}$
को संतुष्ट करने वाले फलनों
$\mathrm{f}:\{1,2,3,4\} \rightarrow\{\mathrm{a} \in \mathbb{Z}|\mathrm{a}| \leq 8\}$
की संख्या है -
यदि $f(x) = \frac{{{{\cos }^2}x + {{\sin }^4}x}}{{{{\sin }^2}x + {{\cos }^4}x}}$, $x \in R$ के लिए, तब $f(2002) = $