माना $f : R \rightarrow R , f ( x )=\frac{ x }{1+ x ^{2}}, x \in R$ द्वारा परिभाषित किया गया है, तो $f$ का परिसर है
$\left[ { - \frac{1}{2},\frac{1}{2}} \right]$
$R\, - [ - 1,1]$
$R - \left[ { - \frac{1}{2},\frac{1}{2}} \right]$
$( - 1,1) - \{ 0\} $
${2^x} + {2^y} = 2$ द्वारा परिभाषित फलन का डोमेन (प्रान्त) है
माना $f ( x )= ax ^2+ bx + c$ है, जिसके लिए $f (1)=3, f (-2)=\lambda$ तथा $f (3)=4$. हैं। यदि $f (0)+ f (1)+ f (-2)+ f (3)=14$ है, तो $\lambda$ बराबर है
$f(x)=\sin x$ द्वारा प्रदत्त फलन $f:\left[0, \frac{\pi}{2}\right] \rightarrow R$ तथा $g(x)=\cos x$ द्वारा प्रदत्त फलन $g:\left[0, \frac{\pi}{2}\right] \rightarrow R$ पर विचार कीजिए। सिद्ध कीजिए कि $f$ तथा $g$ एकैकी है, परंतु $f+g$ एकैकी नहीं है।
यदि $f(x) = \frac{1}{2} - \tan \left( {\frac{{\pi x}}{2}} \right)$; $\left( { - 1 < x < 1} \right)$ तथा $g(x) = \sqrt {3 + 4x - 4{x^2}} $, तो $gof$ का प्रान्त होगा
यादि $f(x) = \cos (\log x)$, तब $f({x^2})f({y^2}) - \frac{1}{2}\left[ {f\,\left( {\frac{{{x^2}}}{2}} \right) + f\left( {\frac{{{x^2}}}{{{y^2}}}} \right)} \right]$ का मान है