माना $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ एक फलन  $f(x)=\frac{x^2+2 x+1}{x^2+1}$ है।तब

  • [JEE MAIN 2023]
  • A

    $(-\infty,-1)$ में $\mathrm{f}(\mathrm{x})$ बहु-एकैकी है।

  • B

    $(1, \infty)$ में $\mathrm{f}(\mathrm{x})$ बहु-एकैकी है।

  • C

     $[1, \infty)$ में $\mathrm{f}(\mathrm{x})$ एकैकी है परन्तु $(-\infty, \infty)$ में एकैकी नहीं है।

  • D

     $(-\infty, \infty)$ में $\mathrm{f}(\mathrm{x})$ एकैकी है।

Similar Questions

माना $\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{\mathrm{n}}+\lambda, \lambda \in \mathbb{R}, \mathrm{n} \in \mathbb{N}$ और $\mathrm{f}(4)=133, \mathrm{f}(5)=255$ है। तो $(\mathrm{f}(3)-\mathrm{f}(2))$ के सभी धनात्मक पूर्णांक भाजकों का योग है -

  • [JEE MAIN 2023]

$\mathrm{f}(\mathrm{x})=4 \sqrt{2} \mathrm{x}^3-3 \sqrt{2} \mathrm{x}-1$ द्वारा परिभाषित फलन

$\mathrm{f}:\left[\frac{1}{2}, 1\right] \rightarrow \mathrm{R}$ के लिए कथनों

($I$) वक्र $\mathrm{y}=\mathrm{f}(\mathrm{x}), \mathrm{x}$-अक्ष को मात्र एक बिंदु पर काटता है

($II$) वक्र $\mathrm{y}=\mathrm{f}(\mathrm{x}), \mathrm{x}$-अक्ष को $\mathrm{x}=\cos \frac{\pi}{12}$ पर काटता है में से

  • [JEE MAIN 2024]

$f(x)=\sin x$ द्वारा प्रदत्त फलन $f:\left[0, \frac{\pi}{2}\right] \rightarrow R$ तथा $g(x)=\cos x$ द्वारा प्रदत्त फलन $g:\left[0, \frac{\pi}{2}\right] \rightarrow R$ पर विचार कीजिए। सिद्ध कीजिए कि $f$ तथा $g$ एकैकी है, परंतु $f+g$ एकैकी नहीं है।

यदि $f(x)=\log _{e}\left(\frac{1-x}{1+x}\right),|x|<1$, है, तो $f\left(\frac{2 x}{1+x^{2}}\right)$ बराबर है

  • [JEE MAIN 2019]

माना $f: R \rightarrow R$ एक फलन है, जो $f(x)=\frac{2 e^{2 x}}{e^{2 x}+e}$ तब $f\left(\frac{1}{100}\right)+f\left(\frac{2}{100}\right)+f\left(\frac{3}{100}\right)+\ldots . .+f\left(\frac{99}{100}\right)$ बराबर होगा।

  • [JEE MAIN 2022]