Let $a = lm\left( {\frac{{1 + {z^2}}}{{2iz}}} \right)$, where $z$ is any non-zero complex number. The set $A = \{ a:\left| z \right| = 1\,and\,z \ne \pm 1\} $ is equal to
$\left( { - 1,1} \right)$
$\left[ { - 1,1} \right]$
$\left[ {0,1} \right)$
$\left( { - 1,0} \right]$
If complex numbers $z_1$, $z_2$ are such that $\left| {{z_1}} \right| = \sqrt 2 ,\left| {{z_2}} \right| = \sqrt 3$ and $\left| {{z_1} + {z_2}} \right| = \sqrt {5 - 2\sqrt 3 }$, then the value of $|Arg z_1 -Arg z_2|$ is
If a complex number $z$ statisfies the equation $x + \sqrt 2 \,\,\left| {z + 1} \right|\,+ \,i\, = \,0,$ then $\left| z \right|$ is equal to
Find the modulus and argument of the complex numbers:
$\frac{1}{1+i}$
If $\bar z$ be the conjugate of the complex number $z$, then which of the following relations is false
If $z$ is a complex number, then which of the following is not true