Trigonometrical Equations
hard

જો $A = \left\{ {\theta \,:\,\sin \,\left( \theta  \right) = \tan \,\left( \theta  \right)} \right\}$ અને $B = \left\{ {\theta \,:\,\cos \,\left( \theta  \right) = 1} \right\}$ બે ગણ હોય તો ....

A

$A = B$

B

$A \not\subset B$

C

$B \not\subset A$

D

$A \subset B$ and $B - A \ne \phi $

(JEE MAIN-2013)

Solution

Let $A = \left\{ {\theta \,:\,\sin \, \theta = \tan \,\theta } \right\}$

and $B = \left\{ {\theta \,:\,\cos \, \theta   = 1} \right\}$

Now, $A\, = \,\left\{ {\theta \,\,:\,\,\sin \,\,\theta \, = \,\frac{{\sin \,\theta }}{{\cos \,\theta }}} \right\}$

$ = \,\{ \theta \,:\,\sin \,\theta \,\,(\cos \,\theta \,\, – \,1)\, = \,0\} $

$ = \,\{ \theta \, = \,0\,,\,\pi \,,\,2\pi \,,\,3\pi ,\,…..\} $

For $B{\mkern 1mu} \,:\,\cos \,\theta \, = \,1\,\, \Rightarrow \,\theta \, = \,\pi \,,\,2\pi \,,\,4\pi \,,…..{\mkern 1mu} $

This showns that $A$ is not contained in $B$ i.e. 

$A\, \not\subset \,B$ but $B\, \subset \,A$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.