माना $d \in R$ तथा $A = \left[ {\begin{array}{*{20}{c}} { - 2}&{4 + d}&{\left( {\sin \,\theta } \right) - 2}\\ 1&{\left( {\sin \,\theta } \right) + 2}&d\\ 5&{\left( {2\sin \,\theta } \right) - d}&{\left( { - \sin \,\theta } \right) + 2 + 2d} \end{array}} \right]$, $\theta  \in \left[ {0,2\pi } \right]$ है, तो $d$ का एक मान है 

  • [JEE MAIN 2019]
  • A

    $-5$

  • B

    $-7$

  • C

    $2\left( {\sqrt 2  + 1} \right)$

  • D

    $2\left( {\sqrt 2  + 2} \right)$

Similar Questions

यदि $\Delta_{ r }=\left|\begin{array}{ccc} r & 2 r -1 & 3 r -2 \\ \frac{ n }{2} & n -1 & a \\ \frac{1}{2} n ( n -1) & ( n -1)^{2} & \frac{1}{2}( n -1)(3 n +4)\end{array}\right|$ हैं, तो $\sum_{ r =1}^{ n -1} \Delta_{ r }$ का मान

  • [JEE MAIN 2014]

सारणिकों का मान ज्ञात कीजिए:

$\left|\begin{array}{cc}2 & 4 \\ -5 & -1\end{array}\right|$

यदि $\left| {\,\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}\,} \right| = k(a + b + c)({a^2} + {b^2} + {c^2}$ $ - bc - ca - ab)$, तो  $k =$

माना$\mathrm{A}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha\end{array}\right]$ तथा $|2 \mathrm{~A}|^3=2^{21}$ है, जहाँ $\alpha, \beta \in \mathrm{Z}$ है। तो $\alpha$ का एक मान है

  • [JEE MAIN 2024]

सारणिक $\left| {\,\begin{array}{*{20}{c}}{ - 1}&1&1\\1&{ - 1}&1\\1&1&{ - 1}\end{array}\,} \right|$ का मान है