3 and 4 .Determinants and Matrices
hard

माना एक न्याय पासे को फेंकने पर प्राप्त संख्या $N$ है यदि समीकरण निकाय $x+y+z=1$  ;   $2 x+N y+2 z=2$  ;  $3 x+3 y+N z=3$ के अद्वितीय हल होने की प्रायिकता $\frac{k}{6}$ है, तो $k$ तथा $N$ के सभी संभव मानों का योग है

A

$18$

B

$19$

C

$20$

D

$21$

(JEE MAIN-2023)

Solution

$x+y+z=1$

$2 x+N y+2 z=2$

$3 x+3 y+N z=3$

$\Delta=\left|\begin{array}{ccc}1 & 1 & 1 \\2 & N & 2 \\3 & 3 & N\end{array}\right| =( N -2)( N -3)$For unique solution $\Delta \neq 0$

So $N \neq 2,3$

$\Rightarrow P ($ system has unique solution $)=\frac{4}{6}$

So $k =4$

Therefore sum $=4+1+4+5+6=20$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.