Let $S\, = \,\left\{ {\theta \, \in \,[ - \,2\,\pi ,\,\,2\,\pi ]\, :\,2\,{{\cos }^2}\,\theta \, + \,3\,\sin \,\theta \, = \,0} \right\}$. Then the sum of the elements of $S$ is
$\frac{{13\,\pi }}{6}$
$2\pi $
$\pi $
$\frac{{5\,\pi }}{3}$
If $\sin 3\alpha = 4\sin \alpha \sin (x + \alpha )\sin (x - \alpha ),$ then $x = $
If $\sin \theta + \cos \theta = \sqrt 2 \cos \alpha $, then the general value of $\theta $ is
The number of all possible triplets $(a_1 , a_2 , a_3)$ such that $a_1+ a_2 \,cos \, 2x + a_3 \, sin^2 x = 0$ for all $x$ is
The equation $\sqrt 3 \sin x + \cos x = 4$ has
If $\sin \,\theta + \sqrt 3 \cos \,\theta = 6x - {x^2} - 11,x \in R$ , $0 \le \theta \le 2\pi $ , then the equation has solution for