General value of $\theta $ satisfying the equation ${\tan ^2}\theta + \sec 2\theta - = 1$ is
$m\pi ,n\pi + \frac{\pi }{3}$
$m\pi ,n\pi \pm \frac{\pi }{3}$
$m\pi ,n\pi \pm \frac{\pi }{6}$
None of these
If $\sin 5x + \sin 3x + \sin x = 0$, then the value of $x$ other than $0$ lying between $0 \le x \le \frac{\pi }{2}$ is
If ${\sec ^2}\theta = \frac{4}{3}$, then the general value of $\theta $ is
If $(2\cos x - 1)(3 + 2\cos x) = 0,\,0 \le x \le 2\pi $, then $x = $
The number of solutions of the equation $\cos \left(x+\frac{\pi}{3}\right) \cos \left(\frac{\pi}{3}-x\right)=\frac{1}{4} \cos ^{2} 2 x, x \in[-3 \pi$ $3 \pi]$ is
Find the solution of $\sin x=-\frac{\sqrt{3}}{2}$