If $\sin 2\theta = \cos \theta ,\,\,0 < \theta < \pi $, then the possible values of $\theta $ are
${90^o},{60^o},{30^o}$
${90^o},{150^o},{60^o}$
${90^o},{45^o},{150^o}$
${90^o},{30^o},{150^o}$
The number of solution of the equation $2\cos ({e^x}) = {5^x} + {5^{ - x}}$, are
The equation ${\sin ^4}x + {\cos ^4}x + \sin 2x + \alpha = 0$ is solvable for
If $\tan m\theta = \tan n\theta $, then the general value of $\theta $ will be in
If $\cos ec\,\theta = \frac{{p + q}}{{p - q}}$ $\left( {p \ne q \ne 0} \right)$, then $\left| {\cot \left( {\frac{\pi }{4} + \frac{\theta }{2}} \right)} \right|$ is equal to
The general solution of the equation $(\sqrt 3 - 1)\sin \theta + (\sqrt 3 + 1)\cos \theta = 2$ is