Gujarati
Hindi
10-2. Parabola, Ellipse, Hyperbola
normal

Let $L$ is distance between two parallel normals of  , $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1,\,\,\,a > b$ then maximum value of $L$ is

A

$2a$

B

$2b$

C

$a+b$

D

$2(a -b)$

Solution

$\operatorname{axsec} \theta-\operatorname{bycosec} \theta=a^{2}-b^{2}$

$\operatorname{axsec} \theta-$ $bycosec$ $\theta=-\left(a^{2}-b^{2}\right)$

$L = \frac{{2\left( {{a^2} – {b^2}} \right)}}{{\sqrt {{a^2}{{\sec }^2}\theta  + {b^2}\cos e{c^2}\theta } }}$

$\because $ $\quad {a^2}{\sec ^2}\theta  + {b^2}\cos e{c^2}\theta  \ge {(a + b)^2}$

$\mathrm{L} \leq 2(\mathrm{a}-\mathrm{b})$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.