Let $L$ is distance between two parallel normals of  , $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1,\,\,\,a > b$ then maximum value of $L$ is

  • A

    $2a$

  • B

    $2b$

  • C

    $a+b$

  • D

    $2(a -b)$

Similar Questions

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{4}+\frac{y^2} {25}=1$.

Let $C$ be the largest circle centred at $(2,0)$ and inscribed in the ellipse $=\frac{x^2}{36}+\frac{y^2}{16}=1$.If $(1, \alpha)$ lies on $C$, then $10 \alpha^2$ is equal to $.........$

  • [JEE MAIN 2023]

Locus of the foot of the perpendicular drawn from the centre upon any tangent to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, is

In an ellipse $9{x^2} + 5{y^2} = 45$, the distance between the foci is

The equation of an ellipse, whose vertices are $(2, -2), (2, 4)$ and eccentricity $\frac{1}{3}$, is