The centre of an ellipse is $C$ and $PN$ is any ordinate and $A$, $A’$ are the end points of major axis, then the value of $\frac{{P{N^2}}}{{AN\;.\;A'N}}$ is

  • A

    $\frac{{{b^2}}}{{{a^2}}}$

  • B

    $\frac{{{a^2}}}{{{b^2}}}$

  • C

    ${a^2} + {b^2}$

  • D

    $1$

Similar Questions

Let $P$ be an arbitrary point on the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ $a > b > 0$. Suppose $F_1$ and $F_2$ are the foci of the ellipse. The locus of the centroid of the $\Delta P F_1 F_2$ as $P$ moves on the ellipse is

  • [KVPY 2010]

Slope of common tangents of parabola $(x -1)^2 = 4(y -2)$ and ellipse ${\left( {x - 1} \right)^2} + \frac{{{{\left( {y - 2} \right)}^2}}}{2} = 1$ are $m_1$ and $m_2$ ,then $m_1^2 + m_2^2$ is equal to

The eccentricity of an ellipse whose centre is at the origin is $\frac{1}{2}$ . If one of its directices is $x = - 4$ then the equation of the normal to it at $\left( {1,\frac{3}{2}} \right)$ is

  • [JEE MAIN 2017]

The centre of the ellipse$\frac{{{{(x + y - 2)}^2}}}{9} + \frac{{{{(x - y)}^2}}}{{16}} = 1$ is

If tangents are drawn from point $P(3\ sin\theta + 4\ cos\theta , 3\ cos\theta\ -\ 4\ sin\theta)$ , $\theta = \frac {\pi}{8}$ to the ellipse $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1$ then angle between the tangents is