10-2. Parabola, Ellipse, Hyperbola
hard

If the normal at an end of a latus rectum of an ellipse passes through an extremity of the minor axis, then the eccentricity $e$ of the ellipse satisfies

A

$e ^{2}+2 e -1=0$

B

$e ^{2}+ e -1=0$

C

$e ^{4}+2 e ^{2}-1=0$

D

$e ^{4}+ e ^{2}-1=0$

(JEE MAIN-2020)

Solution

$\frac{ a ^{2} x }{ x _{1}}-\frac{ b ^{2} y }{ y _{1}}= a ^{2} e ^{2}$

$\frac{a^{2} x}{a e}-\frac{b^{2} y}{b^{2}} \cdot a=a^{2} e^{2}$

$\frac{ ax }{ e }- ay = a ^{2} e ^{2} \Rightarrow \frac{ x }{ e }- y = ae ^{2}$

passes through $(0,$ b) $-b=a e^{2} \Rightarrow b^{2}=a^{2} e^{4}$

$a^{2}\left(1-e^{2}\right)=a^{2} e^{4} \Rightarrow e^{4}+e^{2}=1$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.