Let $P ( S )$ denote the power set of $S =\{1,2,3, \ldots, 10\}$. Define the relations $R_1$ and $R_2$ on $P(S)$ as $A R_1 B$ if $\left( A \cap B ^{ c }\right) \cup\left( B \cap A ^{ c }\right)=\varnothing$ and $AR _2 B$ if $A \cup B ^{ c }=$ $B \cup A ^{ c }, \forall A , B \in P ( S )$. Then :

  • [JEE MAIN 2023]
  • A

    both $R_1$ and $R_2$ are equivalence relations

  • B

    only $R_1$ is an equivalence relation

  • C

    only $R_2$ is an equivalence relation

  • D

    both $R_1$ and $R_2$ are not equivalence relations

Similar Questions

A relation on the set $A\, = \,\{ x\,:\,\left| x \right|\, < \,3,\,x\, \in Z\} ,$ where $Z$ is the set of integers is defined by $R= \{(x, y) : y = \left| x \right|, x \ne  - 1\}$. Then the number of elements in the power set of $R$ is

  • [JEE MAIN 2014]

Let $R$ be a relation on the set $N$ of natural numbers defined by $nRm $$\Leftrightarrow$ $n$ is a factor of $m$ (i.e.,$ n|m$). Then $R$ is

If $n(A) = m$, then total number of reflexive relations that can be defined on $A$ is-

The probability that a relation $R$ from $\{ x , y \}$ to $\{ x , y \}$ is both symmetric and transitive, is equal to

  • [JEE MAIN 2022]

The relation $R= \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)\}$ on set $A = \{1, 2, 3\}$ is