Let $a_1 , a_2, a_3, .... , a_n$, be in $A.P$. If $a_3 + a_7 + a_{11} + a_{15} = 72$ , then the sum of its first $17$ terms is equal to

  • [JEE MAIN 2016]
  • A

    $306$

  • B

    $204$

  • C

    $153$

  • D

    $612$

Similar Questions

If ${S_n}$ denotes the sum of $n$ terms of an arithmetic progression, then the value of $({S_{2n}} - {S_n})$ is equal to

For $\mathrm{x} \geq 0$, the least value of $\mathrm{K}$, for which $4^{1+\mathrm{x}}+4^{1-\mathrm{x}}$, $\frac{\mathrm{K}}{2}, 16^{\mathrm{x}}+16^{-\mathrm{x}}$ are three consecutive terms of an $A.P.$ is equal to :

  • [JEE MAIN 2024]

${7^{th}}$ term of an $A.P.$ is $40$, then the sum of first $13$ terms is

If the first term of an $A.P.$ is $3$ and the sum of its first $25$ terms is equal to the sum of its next $15$ terms, then the common difference of this $A.P.$ is :

  • [JEE MAIN 2020]

Five numbers are in $A.P.$, whose sum is $25$ and product is $2520 .$ If one of these five numbers is $-\frac{1}{2},$ then the greatest number amongst them is

  • [JEE MAIN 2020]