The solution of ${\log _{\sqrt 3 }}x + {\log _{\sqrt[4]{3}}}x + {\log _{\sqrt[6]{3}}}x + ......... + {\log _{\sqrt[{16}]{3}}}x = 36$ is

  • A

    $x = 3$

  • B

    $x = 4\sqrt 3 $

  • C

    $x = 9$

  • D

    $x = \sqrt 3 $

Similar Questions

If $< {a_n} >$ is an $A.P$. and $a_1 + a_4 + a_7 + .......+ a_{16} = 147$, then $a_1 + a_6 + a_{11} + a_{16}$ is equal to

Write the first three terms in each of the following sequences defined by the following:

$a_{n}=2 n+5$

If $\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$ is the $A.M.$ between $a$ and $b,$ then find the value of $n$.

The difference between an integer and its cube is divisible by

Let $S_n$ denote the sum of first $n$ terms an arithmetic progression. If $S_{20}=790$ and $S_{10}=145$, then $S_{15}-$ $S_5$ is:

  • [JEE MAIN 2024]