જો $P$ $(3\, sec\,\theta , 2\, tan\,\theta )$ અને $Q\, (3\, sec\,\phi , 2\, tan\,\phi )$ જ્યાં $\theta + \phi \, = \frac{\pi}{2}$ એ અતિવલય $\frac{{{x^2}}}{9} - \frac{{{y^2}}}{4} = 1$ ના ભિન્ન બિંદુઓ હોય તો $P$ અને $Q$ ને લંબ હોય તેવી રેખાનો છેદબિંદુના યામ મેળવો.
$\frac{11}{3}$
$-\frac{11}{3}$
$\frac{13}{2}$
$-\frac{13}{2}$
અહી અતિવલય $H : \frac{ x ^{2}}{ a ^{2}}-\frac{ y ^{2}}{ b ^{2}}=1$ એ બિંદુ $(2 \sqrt{2},-2 \sqrt{2})$ માંથી પસાર થાય છે. પરવલય દોરવામાં આવે છે કે જેથી તેની નાભીએ $H$ ની ધન $x$-યામ વાળી નાભી હોય છે અને પરવલયની નિયમિકાએ $H$ ની બીજી નાભીમાંથી પસાર થાય છે. જો પરવલયની નાભીલંબની લંબાઈએ $H$ ની નાભીલંબની લંબાઈ કરતાં $e$ ગણી છે કે જ્યાં $e$ એ અતિવલય $H$ ની ઉત્કેન્દ્રિતા છે તો આપેલ પૈકી ક્યૂ બિંદુ પરવલય પર આવેલ છે ?
રેખાઓ $(\sqrt{3}) k x+ k y-4 \sqrt{3}=0$ અને $\sqrt{3} x-y-4(\sqrt{3}) k =0$ નાં છેદબિંદુનાં બિંદુપથનું સમીકરણ એક શાંકવ છે, જેની ઉત્કેન્દ્ર્તા .......... છે.
ધારોકે $(3, \alpha)$ બિંદુ પરનો, પરવલય $y ^2=12 x$ નો સ્પર્શક એ રેખા $2 x +2 y =3$ ને લંબ છે. તો અતિવલય $\alpha^2 x ^2-9 y ^2=9 \alpha^2$ ના બિંદુ $(\alpha-1, \alpha+2)$ પરના અભિલંબથી બિંદુ $(6,-4)$ ના અંતરની વર્ગ $........$ થશે.
આપેલ શરતોનું પાલન કરતાં અતિવલયનું સમીકરણ મેળવો : નાભિઓ $(0,\,\pm 13),$ અનુબધ્ધ અક્ષની લંબાઈ $24$
રેખા $ ℓx + my + n = 0$ એ અતિવલય $\frac{{{x^2}}}{{{a^2}}}\, - \,\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$ નો સ્પર્શક ક્યારે કહેવાય ?