ધારો કે અતિવલય $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ ની ઉત્કેન્દ્રતા $\frac{5}{4}$ છે. જો આ અતિવલય પરનાં બિંદુ $\left(\frac{8}{\sqrt{5}}, \frac{12}{5}\right)$ આગળ અભીલંબનું સમીકરણ $8 \sqrt{5} x +\beta y =\lambda$ હોય, તો $\lambda-\beta$ = ............
$89$
$85$
$78$
$45$
ચોરસ $ABCD$ ના બધાજ શિરોબિંદુઓ વક્ર $x ^{2} y ^{2}=1$ પર આવેલ છે અને તેમના મધ્યબિંદુઓ પણ આ વક્ર પર આવેલ હોય તો ચોરસ $ABCD$ નું ક્ષેત્રફળ મેળવો.
જો ઉપવલય $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{{b^2}}} = 1$ ની નાભિ અતિવલય $\frac{{{x^2}}}{{144}} - \frac{{{y^2}}}{{81}} = \frac{1}{{25}}$ ની નાભિ હોય તો $b^2$ =
ધારો કે અતિવલય $\frac{x^2}{9}-\frac{y^2}{b^2}=1$ નો નાભિલંબ અતિવલયના કેન્દ્ર સાથે $\frac{\pi}{3}$ સાથે ખૂણો આંતરે છે. જો $b^2$ બરાબર $\frac{l}{m}(1+\sqrt{\mathrm{n}})$ થાય, જ્યાં $l$ અને $\mathrm{m}$ પરસ્પર અવિભાજ્ય સંખ્યાઓ છે,તો $\mathrm{l}^2+\mathrm{m}^2+\mathrm{n}^2=$___________.
વક્ર $ y^2 = 8x$ અને $xy = -1$ ના સામાન્ય સ્પર્શકનું સમીકરણ.....
અતિવલય $4{x^2} - {y^2} = 36$ ને બિંદુ $P$ અને $Q$ આગળ સ્પર્શકો દોરવામાં આવે છે. જો આ સ્પર્શકો બિંદુ $T\left( {0,3} \right)$ આગળ છેદે તો $\Delta PTQ$ નું ક્ષેત્રફળ . . . . . .છે. .