- Home
- Standard 11
- Mathematics
ધારો કે $P(a \,sec\, \theta\, , b\, tan \,\theta )$ અને $Q (a\, sec\, \phi ,\, b\, tan\,\phi ,)$ જ્યાં ,$\theta \,\, + \;\,\varphi \,\, = \,\,\frac{\pi }{2},$ અતિવલય $\frac{{{x^2}}}{{{a^2}}}\,\, - \,\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$ પરના બે બિંદુઓ છે. જો $(h, k)$ એ $P$ અને $Q$, આગળનાં અભિલંબોનું છેદબિંદુ હોય,તો $k = …….$
$\frac{{{a^2}\,\, + \;\,{b^2}}}{a}$
$ - \frac{{{a^2}\,\, + \;\,{b^2}}}{a}$
$\frac{{{a^2}\,\, + \;\,{b^2}}}{b}$
$ - \frac{{{a^2}\,\, + \;\,{b^2}}}{b}$
Solution
$P\,\,\left( {a\,\sec \,\,\theta ,\,\,b\,\,\tan \,\,\theta } \right)$ અને $Q\,\,\left( {a\,\,\sec \varphi ,\,\,b\,\,\tan \,\,\varphi } \right)$ આપેલા છે
$P$ બિંદુ આગળના સ્પર્શકનું સમીકરણ $:\,\,\,\frac{{x\,\,\sec \,\theta }}{a}\,\, – \,\,\frac{{y\,\tan \,\,\theta }}{b}\,\, = \,\,1\,$
સ્પર્શક ઢાળ $m\,\, = \,\,\frac{b}{{\tan \,\,\theta }}\,\, \times \,\,\frac{{\sec \theta }}{a}\,\, = \,\,\frac{b}{a}\,\,.\,\,\frac{1}{{\sin \,\,\theta }}$
આથી $P$ આગળના લંબનું સમીકરણ $:\,\,y\,\, – \,\,b\,\tan \,\,\theta \,\, = \,\, – \frac{{a\,\sin \,\,\theta }}{b}\,\,\left( {x\,\, – \,\,a\,\sec \theta } \right)$
અથવા $by\,\, – \,\,{b^2}\,\,\tan \,\,\theta \,\, = \,\, – a\sin \,\,\theta \,\,x\,\, + \;\,{a^2}\tan \,\theta $
અથવા $a\,\sin \theta x\,\, + \,\,by\,\, = \,\,\left( {{a^2}\,\, + \;\,{b^2}} \right)\,\,\tan \,\,\theta \,\,………\left( i \right)$
તે જ રીતે $Q$ આગળનું લંબનું સમીકરણ $:\,\,a\sin \,\varphi \,\, + \,by\,\, = \,\,\left( {{a^2}\,\, + \;\,{b^2}} \right)\,\,\tan \,\varphi \,\,\,\,……..\left( {ii} \right)$
$\left( i \right)$ નો $\,\sin \,\,\varphi $ અને $\left( {ii} \right)$ નો $\sin \,\,\theta \,$ દ્વારા ગુણોતર કરતાં
$a\,\sin \,\theta \,\sin \,\varphi x\,\, + \;\,b\,\sin \,\varphi y\,\, = \,\,\left( {{a^2}\,\, + \;\,{b^2}} \right)\,\,\tan \,\theta \,\sin \,\varphi $
$a\,\sin \,\varphi \,\sin \,\theta \,x\,\, + \;\,b\sin \,\theta y\,\, = \,\,\left( {{a^2}\,\, + \;\,{b^2}} \right)\,\,\tan \,\varphi \,\sin \,\theta $
કિંમતો મૂકતાં $\left( {\sin \,\,\varphi \,\, – \,\,\sin \,\,\theta } \right)\,\, = \,\,\left( {{a^2}\,\, + \,\,{b^2}} \right)\,\,\left( {\tan \,\theta \,\,\sin \,\,\varphi \,\, – \,\,\tan \,\varphi \,\,\sin \,\theta } \right)$
$\therefore \,\,y\,\, = \,\,k\,\, = \,\,\frac{{{a^2}\,\, + \;\,{b^2}}}{b}\,\,.\,\,\frac{{\tan \,\,\theta \,\,\sin \,\,\varphi \,\, – \,\,\tan \,\,\varphi \,\,\sin \,\,\theta }}{{\sin \,\,\varphi \,\, – \,\,\sin \,\,\theta }}$
$\because \,\,\theta \,\, + \;\,\varphi \,\, = \,\,\frac{\pi }{2}\,\, \Rightarrow \,\,\varphi \,\, = \,\,\frac{\pi }{2}\,\, – \,\,\theta \,$
$ \Rightarrow \,\,\sin \,\,\varphi \,\, = \,\,\cos \,\,\theta \,$ અને $\tan \,\,\varphi \,\, = \,\,\cot \,\,\theta $
$\therefore \,\,y\,\, = \,\,k\,\, = \,\,\frac{{{a^2}\,\, + \;\,{b^2}}}{b}\,\,.\,\,\frac{{\tan \,\,\theta \,\,\cos \,\,\theta \,\, – \,\,\cot \,\,\theta \,\,\sin \,\,\theta }}{{\cos \,\,\theta \, – \,\,\sin \,\,\theta }}$
$ \Rightarrow \,\,\frac{{{a^2}\,\, + \;\,{b^2}}}{b}\,\,\left( {\frac{{\sin \,\,\theta \,\, – \,\,\cos \,\,\theta }}{{\cos \,\,\theta \,\, – \,\,\sin \,\,\theta }}} \right)\,\, = \,\, – \,\,\frac{{\left( {{a^2}\,\, + \;\,{b^2}} \right)}}{b}$