$ \bar x , M$ અને  $\sigma^2$ એ $n$ અવલોકનો $x_1 , x_2,...,x_n$ અને $d_i\, = - x_i - a, i\, = 1, 2, .... , n$, જ્યાં $a$ એ કોઈ પણ સંખ્યા હોય તે  માટે અનુક્રમે મધ્યક બહુલક અને વિચરણ છે 
વિધાન $I$:  $d_1, d_2,.....d_n$ નો વિચરણ $\sigma^2$ થાય 
વિધાન $II$ : $d_1 , d_2, .... d_n$ નો મધ્યક અને બહુલક અનુક્રમે $-\bar x -a$ અને $- M - a$ છે

  • [JEE MAIN 2014]
  • A

    વિધાન $I$ અને વિધાન $II$ બંને ખોટા છે 

  • B

    વિધાન $I$ અને વિધાન $II$ બંને સાચા છે 

  • C

    વિધાન $I$ સાચું અને વિધાન $II$ ખોટું છે 

  • D

    વિધાન $I$ ખોટું અને વિધાન $II$ સાચું  છે 

Similar Questions

$100$ અવલોકનોનો સરવાળો અને તેમના વર્ગોનો સરવાળો અનુક્રમે $400$ અને  $2475$ છે ત્યારબાદ માલૂમ પડ્યું કે ત્રણ અવલોકનો $3, 4$ અને  $5$ ખોટા અવલોકનોનો છે જો ખોટા અવલોકનોને કાઢી નાખવામાં આવે તો બાકી રહેલા અવલોકનોનો વિચરણ કેટલું થાય ? 

  • [JEE MAIN 2017]

જો $ 10$  અવલોકનોનો સરવાળો અને વર્ગનો સરવાળો અનુક્રમે $12$  અને $18 $ હોય તો અવલોકનોનું પ્રમાણિત વિચલન = ……..

ધારો કે $x_1, x_2, ……, x_n $ એ $n$ અવલોકનો છે અને ધારો કે $\bar x$એ એમનો સમાંતર મધ્યક છે અને $\sigma^2$ એ તેમનું વિચરણ છે.

વિધાન $ - 1 : 2x_1, 2x_2, ……, 2x_n$ નું વિચરણ $4\sigma^2$ છે.

વિધાન $- 2 : 2x_1, 2x_2, ….., 2x_n$  નો સમાંતર મધ્યક $4\,\bar x$છે.

ત્રણ અવલોકન $a, b$ અને $c$  આપેલ છે કે જેથી $b = a + c $ થાય છે. જો $a +2$ $b +2, c +2$ નું પ્રમાણિત વિચલન $d$ હોય તો આપેલ પૈકી ક્યૂ સત્ય છે $?$

  • [JEE MAIN 2021]

વિધાન $- 1 : $ પ્રથમ $n$  યુગ્મ પ્રાકૃતિક સંખ્યાઓનું વિચરણ $\frac{{{n^2}\, - \,\,1}}{4}$છે.

વિધાન $ - 2$  : પ્રથમ પ્રાકૃતિક સંખ્યાઓનો સરવાળો $\frac{{n(n\,\, + \,\,1)}}{2}$અને પ્રથમ $n$  પ્રાકૃતિક સંખ્યાઓના વર્ગનો સરવાળો $\frac{{n(n\, + \,\,1)\,(2n\, + \,\,1)}}{6}$ છે.