The radius of the circle having its centre at $(0, 3)$ and passing through the foci of the ellipse $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1$, is
$3$
$3.5$
$4$
$\sqrt {12} $
Let $E$ be the ellipse $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$ and $C$ be the circle ${x^2} + {y^2} = 9$. Let $P$ and $Q$ be the points $(1, 2)$ and $(2, 1)$ respectively. Then
Let the eccentricity of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>b$, be $\frac{1}{4}$. If this ellipse passes through the point $\left(-4 \sqrt{\frac{2}{5}}, 3\right)$, then $a^{2}+b^{2}$ is equal to
In an ellipse the distance between its foci is $6$ and its minor axis is $8$. Then its eccentricity is
The sum of focal distances of any point on the ellipse with major and minor axes as $2a$ and $2b$ respectively, is equal to