$\left| {\,\begin{array}{*{20}{c}}{ - 1}&1&1\\1&{ - 1}&1\\1&1&{ - 1}\end{array}\,} \right|$ = . . . .

  • A

    $-4$

  • B

    $0$

  • C

    $1$

  • D

    $4$

Similar Questions

$k$ ની કિમત  . . . .  માટે સમીકરણો $kx + 2y\,-z = 1$  ;  $(k\,-\,1)y\,-2z = 2$  ;  $(k + 2)z = 3$ એ એકાકી ઉકેલ ધરાવે . 

જો સુરેખ સમીકરણોની સંહતિ  $2 \mathrm{x}+2 \mathrm{ay}+\mathrm{az}=0$ ; $2 x+3 b y+b z=0$ ; $2 \mathrm{x}+4 \mathrm{cy}+\mathrm{cz}=0$ ;કે જ્યાં $a, b, c \in R$ એ ભિન્ન શૂન્યતર સંખ્યાઓ હોય તો . . . . 

  • [JEE MAIN 2020]

જો $\left| {\,\begin{array}{*{20}{c}}{ - {a^2}}&{ab}&{ac}\\{ab}&{ - {b^2}}&{bc}\\{ac}&{bc}&{ - {c^2}}\end{array}\,} \right| = K{a^2}{b^2}{c^2} $ તો $K = $

$\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{1 + x}&1\\1&1&{1 + y}\end{array}\,} \right| = $

$xyz$ ના ગુણાકારની ન્યૂનતમ કિમત મેળવો કે જેથી $\left| {\begin{array}{*{20}{c}}
  x&1&1 \\ 
  1&y&1 \\ 
  1&1&z 
\end{array}} \right|$ ની કિમંત અનૃણ મળે.

  • [JEE MAIN 2015]