Which of the following Boolean expressions is not a tautology ?
$(\sim \mathrm{p} \Rightarrow \mathrm{q}) \vee(\sim \mathrm{q} \Rightarrow p)$
$(\mathrm{q} \Rightarrow p) \vee(\sim \mathrm{q} \Rightarrow p)$
$(\mathrm{p} \Rightarrow \mathrm{q}) \vee(\sim \mathrm{q} \Rightarrow p)$
$(\mathrm{p} \Rightarrow \sim \mathrm{q}) \vee(\sim \mathrm{q} \Rightarrow p)$
Which one of the following, statements is not a tautology
$\left( {p \wedge \sim q \wedge \sim r} \right) \vee \left( { \sim p \wedge q \wedge \sim r} \right) \vee \left( { \sim p \wedge \sim q \wedge r} \right)$ is equivalent to-
If $p$ and $q$ are simple propositions, then $p \Rightarrow q$ is false when
If $p \Rightarrow (\sim p \vee q)$ is false, the truth values of $p$ and $q$ are respectively
The logical statement $(p \Rightarrow q){\wedge}(q \Rightarrow \sim p)$ is equivalent to