The statement among the following that is a tautology is
$A \vee(A \wedge B)$
$A \wedge(A \vee B)$
$B \rightarrow[ A \wedge( A \rightarrow B )]$
$[ A \wedge( A \rightarrow B )] \rightarrow B$
The statement $( p \wedge q ) \Rightarrow( p \wedge r )$ is equivalent to.
Statement $-1 :$ $\sim (p \leftrightarrow \sim q)$ is equivalent to $p\leftrightarrow q $
Statement $-2 :$ $\sim (p \leftrightarrow \sim q)$ s a tautology
Negation of the statement $(p \vee r) \Rightarrow(q \vee r)$ is :
If the truth value of the Boolean expression $((\mathrm{p} \vee \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{r}) \wedge(\sim \mathrm{r})) \rightarrow(\mathrm{p} \wedge \mathrm{q}) \quad$ is false then the truth values of the statements $\mathrm{p}, \mathrm{q}, \mathrm{r}$ respectively can be:
Negation of $(p \Rightarrow q) \Rightarrow(q \Rightarrow p)$ is