Let $\alpha$ and $\beta$ be the roots of the equation $\mathrm{x}^{2}-\mathrm{x}-1=0 .$ If $\mathrm{p}_{\mathrm{k}}=(\alpha)^{\mathrm{k}}+(\beta)^{\mathrm{k}}, \mathrm{k} \geq 1,$ then which one of the following statements is not true?
$\left(p_{1}+p_{2}+p_{3}+p_{4}+p_{5}\right)=26$
$\mathrm{p}_{5}=11$
$\mathrm{p}_{3}=\mathrm{p}_{5}-\mathrm{p}_{4}$
$\mathrm{p}_{5}=\mathrm{p}_{2} \cdot \mathrm{p}_{3}$
Let $x, y, z$ be positive reals. Which of the following implies $x=y=z$ ?
$I.$ $x^3+y^3+z^3=3 x y z$
$II.$ $x^3+y^2 z+y z^2=3 x y z$
$III.$ $x^3+y^2 z+z^2 x=3 x y z$
$IV.$ $(x+y+z)^3=27 x y z$
If $\alpha ,\beta$ are the roots of $x^2 -ax + b = 0$ and if $\alpha^n + \beta^n = V_n$, then -
If $\alpha ,\,\beta ,\,\gamma $ are the roots of the equation ${x^3} + 4x + 1 = 0,$ then ${(\alpha + \beta )^{ - 1}} + {(\beta + \gamma )^{ - 1}} + {(\gamma + \alpha )^{ - 1}} = $
The equation${e^x} - x - 1 = 0$ has
The number of ordered pairs $(x, y)$ of positive integers satisfying $2^x+3^y=5^{x y}$ is