4-2.Quadratic Equations and Inequations
hard

Let $\alpha$ and $\beta$ be the roots of the equation $\mathrm{x}^{2}-\mathrm{x}-1=0 .$ If $\mathrm{p}_{\mathrm{k}}=(\alpha)^{\mathrm{k}}+(\beta)^{\mathrm{k}}, \mathrm{k} \geq 1,$ then which one of the following statements is not true?

A

$\left(p_{1}+p_{2}+p_{3}+p_{4}+p_{5}\right)=26$

B

$\mathrm{p}_{5}=11$

C

$\mathrm{p}_{3}=\mathrm{p}_{5}-\mathrm{p}_{4}$

D

$\mathrm{p}_{5}=\mathrm{p}_{2} \cdot \mathrm{p}_{3}$

(JEE MAIN-2020)

Solution

$\alpha+\beta=1, \alpha \beta=-1$

$\mathrm{P}_{\mathrm{k}}=\alpha^{\mathrm{k}}+\beta^{\mathrm{k}}$

$\alpha^{2}-\alpha-1=0$

$\Rightarrow \alpha^{\mathrm{k}}-\alpha^{\mathrm{k}-1}-\alpha^{\mathrm{k}-2}=0$

and $\beta^{\mathrm{k}}-\beta^{\mathrm{k}-1}-\beta^{\mathrm{k}-2}=0$

$\Rightarrow \mathrm{P}_{\mathrm{k}}=\mathrm{P}_{\mathrm{k}-1}+\mathrm{P}_{\mathrm{k}-2}$

$P_{1}=\alpha+\beta=1$

$\mathrm{P}_{2}=(\alpha+\beta)^{2}-2 \alpha \beta=1+2=3$

$\mathrm{P}_{3}=4$

$\mathrm{P}_{4}=7$

$\mathrm{P}_{5}=11$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.