4-2.Quadratic Equations and Inequations
normal

Let $x_1,x_2,x_3 \in R-\{0\} $ ,$x_1 + x_2 + x_3\neq 0$ and $\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}=\frac{1}{x_1+x_2+x_3}$, then  $\frac{1}{{x^n}_1+{x^n}_2+{x^n}_3} =\frac{1}{{x^n}_1}+\frac{1}{{x^n}_2}+\frac{1}{{x^n}_3}$ holds good for

A

all $n \in N$

B

all odd numbers $n$

C

all even number $n$

D

no integer $n$

Solution

Consider a cubic equation whose roots are

$\mathrm{x}_{1}, \mathrm{x}_{2}$ and $\mathrm{x}_{3}$

$f(\mathrm{x})=\mathrm{x}^{3}+\alpha \mathrm{x}^{2}+\beta \mathrm{x}+\gamma$

$=\left(\mathrm{x}-\mathrm{x}_{1}\right)\left(\mathrm{x}-\mathrm{x}_{2}\right)\left(\mathrm{x}-\mathrm{x}_{3}\right)=0$

Given $\left(\mathrm{x}_{1} \mathrm{x}_{2}+\mathrm{x}_{2} \mathrm{x}_{3}+\mathrm{x}_{3} \mathrm{x}_{1}\right)\left(\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}\right)=\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3}$

$\beta(-\alpha)=-\gamma$

$\gamma=\alpha \beta$

$\therefore f(\mathrm{x})=0=\mathrm{x}^{3}+\alpha \mathrm{x}^{2}+\beta \mathrm{x}+\alpha \beta$

$=\mathrm{x}^{2}(\mathrm{x}+\alpha)+\beta(\mathrm{x}+\alpha)=(\mathrm{x}+\alpha)\left(\mathrm{x}^{2}+\beta\right)$

$\therefore \quad \mathrm{x}=-\alpha$

Let $\mathrm{x}_{1}=-\alpha ; \mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}=-\alpha \Rightarrow \mathrm{x}_{2}+\mathrm{x}_{3}=0$

$\Rightarrow \quad x_{2}=-x_{3}$

$\therefore \frac{1}{\mathrm{x}_{1}^{\mathrm{n}}+\mathrm{x}_{2}^{\mathrm{n}}+\mathrm{x}_{3}^{\mathrm{n}}}=\frac{1}{\mathrm{x}_{1}^{\mathrm{n}}+\left(\mathrm{x}_{2}\right)^{\mathrm{n}}+\left(-\mathrm{x}_{2}\right)^{\mathrm{n}}}$

$=\frac{1}{x_{1}^{n}}+\frac{1}{x_{2}^{n}}+\frac{1}{\left(-x_{2}\right)^{n}}$

Which is true for all odd integer $n$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.