જો $\alpha$ અને $\beta$ એ સમીકરણ $\mathrm{x}^{2}-\mathrm{x}-1=0 $ ના બીજ હોય અને $\mathrm{p}_{\mathrm{k}}=(\alpha)^{\mathrm{k}}+(\beta)^{\mathrm{k}}, \mathrm{k} \geq 1,$ તો આપેલ પૈકી ક્યૂ વિધાન સત્ય છે ?
$\left(p_{1}+p_{2}+p_{3}+p_{4}+p_{5}\right)=26$
$\mathrm{p}_{5}=11$
$\mathrm{p}_{3}=\mathrm{p}_{5}-\mathrm{p}_{4}$
$\mathrm{p}_{5}=\mathrm{p}_{2} \cdot \mathrm{p}_{3}$
સમીકરણ $x|x-1|+|x+2|+a=0$ ને બરાબર એક જ વાસ્તવિક બીજ હોય, તેવા તમામ $a \in R$ નો ગણ $........$ છે.
સમીકરણ $x^2 + 2 | x | -15\geq 0$ નો ઉકેલ કેવી રીતે આપી શકાય ?
સમીકરણ $x\left(x^2+3|x|+5|x-1|+6|x-2|\right)=0$ ના વાસ્તવિક ઉકેલોની સંખ્યા__________ છે.
જો ${\rm{x}}$ વાસ્તવિક હોય , તો $\,\frac{{3{x^2} + \,9x\, + \,17}}{{3{x^2}\, + \,9x\, + \,7}}$ નું મહતમ મૂલ્ય કેટલું થાય ?
સમીકરણ ${4^x} - {3^{x\,\; - \;\frac{1}{2}}} = {3^{x + \frac{1}{2}}} - {2^{2x - 1}}\,$ માં ${\rm{x}}$ કિંમત =.....