माना $a -2 b + c =1$ है। यदि $f(x)=\left|\begin{array}{lll}x+a & x+2 & x+1 \\x+b & x+3 & x+2 \\x+c & x+4 & x+3\end{array}\right|$ है, तो
$f(-50)=501$
$f(-50)=-1$
$f(50)=1$
$f(50)=501$
सारणिकों के गुणधर्मों का प्रयोग करके सिद्ध कीजिए :
$\left|\begin{array}{ccc}a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b\end{array}\right|=(a+b+c)^{3}$
ऐसे सभी भिन्न (distinct) $x \in R$, जिनके लिए $\left|\begin{array}{ccc}x & x^2 & 1+x^3 \\ 2 x & 4 x^2 & 1+8 x^3 \\ 3 x & 9 x^2 & 1+27 x^3\end{array}\right|$=$10$ है, की कुल संख्या है
यदि $ a, b, c $ सभी भिन्न-भिन्न हैं और $\left| {\,\begin{array}{*{20}{c}}a&{{a^3}}&{{a^4} - 1}\\b&{{b^3}}&{{b^4} - 1}\\c&{{c^3}}&{{c^4} - 1}\end{array}\,} \right|$ = $ 0$ ,तो $abc(ab + bc + ca)$ का मान है
बिना प्रसरण किए और सारणिकों के गुणधर्मो का प्रयोग करके सिद्ध कीजिए।
$\left|\begin{array}{lll}2 & 7 & 65 \\ 3 & 8 & 75 \\ 5 & 9 & 86\end{array}\right|=0$
यदि $\omega $ इकाई का एक घनमूल हो, तो $\left| {\,\begin{array}{*{20}{c}}{x + 1}&\omega &{{\omega ^2}}\\\omega &{x + {\omega ^2}}&1\\{{\omega ^2}}&1&{x + \omega }\end{array}\,} \right| = $