- Home
- Standard 11
- Mathematics
અહી $a_{n}$ એ ધન સમગુણોતર શ્રેણીનું $n^{\text {th }}$ મુ પદ દર્શાવે છે . જો $\sum\limits_{n=1}^{100} a_{2 n+1}=200$ અને $\sum\limits_{n=1}^{100} a_{2 n}=100,$ તો $\sum\limits_{n=1}^{200} a_{n}$ મેળવો..
$225$
$175$
$300$
$150$
Solution
$\sum_{n=1}^{100} a_{2 n+1}=200 \Rightarrow a_{3}+a_{5}+a_{7}+\ldots .+a_{201}=200$
$\Rightarrow \operatorname{ar}^{2} \frac{\left(\mathrm{r}^{200}-1\right)}{\left(\mathrm{r}^{2}-1\right)}=200$
$\sum_{n=1}^{100} a_{2 n}=100 \Rightarrow a_{2}+a_{4}+a_{6}+\ldots+a_{200}=100$
$\Rightarrow \frac{\operatorname{ar}\left(\mathrm{r}^{200}-1\right)}{\left(\mathrm{r}^{2}-1\right)}=100$
On dividing $\mathrm{r}=2$
on adding $a_{2}+a_{3}+a_{4}+a_{5}+\ldots+a_{200}+a_{201}=300$
$\Rightarrow \mathrm{r}\left(\mathrm{a}_{1}+\mathrm{a}_{2}+\mathrm{a}_{3}+\ldots .+\mathrm{a}_{200}\right)=300$
$\Rightarrow \sum_{n=1}^{200} a_{n}=150$