જો $z$ સંકર સંખ્યા છે કે જેથી $\left|\frac{z-i}{z+2 i}\right|=1$ અને  $|z|=\frac{5}{2} \cdot$ હોય તો $|z+3 i|$ મેળવો.

  • [JEE MAIN 2020]
  • A

    $\sqrt{10}$

  • B

    $2 \sqrt{3}$

  • C

    $\frac{7}{2}$

  • D

    $\frac{15}{4}$

Similar Questions

સંકર સંખ્યાનો માનાંક અને કોણાંક શોધો : $\frac{1}{1+i}$

$\left| {\frac{1}{2}({z_1} + {z_2}) + \sqrt {{z_1}{z_2}} } \right| + \left| {\frac{1}{2}({z_1} + {z_2}) - \sqrt {{z_1}{z_2}} } \right|$ =

સમીકરણ ${z^2} + \bar z = 0$ ના ઉકેલની સંખ્યા મેળવો.

જો ${z_1}$ અને ${z_2}$ બે સંકર સંખ્યા છે કે જેથી $|{z_1} + {z_2}| = |{z_1}| + |{z_2}|$ તો arg $({z_1}) - $arg $({z_2})$ = . . . ..

  • [IIT 1979]

જો $z_1 = a + ib$ અને $z_2 = c + id$ એ બે સંકર સંખ્યાઓ છે કે જેથી $| z_1 | = | z_2 |=1$ અને  $R({z_1}\overline {{z_2}} ) = 0$, હોય તો સંકર સંખ્યાઓ $w_1 = a + ic$ અને  $w_2 = b + id$ માટે