माना $z$ एक ऐसी सम्मिश्र संख्या है, कि $\left|\frac{ z - i }{ z +2 i }\right|=1$ है तथा $|z|=\frac{5}{2}$ है, तो $|z+3 i|$ का मान है
$\sqrt{10}$
$2 \sqrt{3}$
$\frac{7}{2}$
$\frac{15}{4}$
निम्नलिखित सम्मिश्र संख्याओं का मापांक एवं कोणांक ज्ञात कीजिए।
$\frac{1+i}{1-i}$
यदि $z = x + iy$ समीकरणों $| z |-2=0$ तथा $|z-i||z+5 i|=0$ को संतुष्ट करता है, तो
$z$ का वह मान जिसके लिए $|z + i|\, = \,|z - i|$ है
यदि $\mathrm{z}=\mathrm{x}+\mathrm{i} y, \mathrm{xy} \neq 0$, समीकरण $z^2+i \bar{z}=0$, को संतुष्ट करता है, तो $\left|z^2\right|$ बराबर है :
यदि $z$ तथा किसी दूसरी सम्मिश्र संख्या के कोणांक का योग $\pi $ हो, तब दूसरी सम्मिश्र संख्या को लिखा जा सकता है