माना $z$ एक ऐसी सम्मिश्र संख्या है, कि $\left|\frac{ z - i }{ z +2 i }\right|=1$ है तथा $|z|=\frac{5}{2}$ है, तो $|z+3 i|$ का मान है
$\sqrt{10}$
$2 \sqrt{3}$
$\frac{7}{2}$
$\frac{15}{4}$
यदि $z = 3 + 5i,\,\,$तब $\,{z^3} + \bar z + 198 = $
माना $z,w$ सम्मिश्र संख्यायें हैं जबकि $\overline z + i\overline w = 0$ और $arg\,\,zw = \pi $, तब $arg\ z$ बराबर है
यदि $z_{1}=2-i, z_{2}=1+i,\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+i}\right|$ का मान ज्ञात कीजिए।
यदि $z =2+3 i$ है, तो $z ^5+(\overline{ z })^5$ बराबर है:
यदि ${z_1}.{z_2}........{z_n} = z,$ हो, तब $arg\,{z_1} + arg\,{z_2} + ....$+$arg{z_n}$और $arg\,z$ का अन्तर होगा