Let $\mathrm{A}$ be the set of all students of a boys school. Show that the relation $\mathrm{R}$ in A given by $\mathrm{R} =\{(a, b): \mathrm{a} $ is sister of $\mathrm{b}\}$ is the empty relation and $\mathrm{R} ^{\prime}=\{(a, b)$ $:$ the difference between heights of $\mathrm{a}$ and $\mathrm{b}$ is less than $3\,\mathrm{meters}$ $\}$ is the universal relation. 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

since the school is boys school, no student of the school can be sister of any student of the school. Hence, $\mathrm{R} =\phi,$ showing that $\mathrm{R}$ is the empty relation. It is also obvious that the difference between heights of any two students of the school has to be less than $3\,\mathrm{meters}$. This shows that $\mathrm{R}^{\prime}=\mathrm{A} \times \mathrm{A}$ is the universal relation.

Similar Questions

Let $A =\{2,3,4\}$ and $B =\{8,9,12\}$. Then the number of elements in the relation $R=\left\{\left(\left(a_1, b_1\right),\left(a_2, b_2\right)\right) \in(A \times B, A \times B): a_1\right.$ divides $b_2$ and $a_2$ divides $\left.b_1\right\}$ is:

  • [JEE MAIN 2023]

Let $S$ be the set of all real numbers. Then the relation $R = \{(a, b) : 1 + ab > 0\}$ on $S$ is

Let $L$ be the set of all lines in $XY$ plane and $R$ be the relation in $L$ defined as $R =\{\left( L _{1}, L _{2}\right): L _{1} $ is parallel to $L _{2}\} .$ Show that $R$ is an equivalence relation. Find the set of all lines related to the line $y=2 x+4$

If $R$ is an equivalence relation on a set $A$, then ${R^{ - 1}}$ is

The relation $R$ defined in $N$ as $aRb \Leftrightarrow b$ is divisible by $a$ is