Let $\mathrm{A}$ be the set of all students of a boys school. Show that the relation $\mathrm{R}$ in A given by $\mathrm{R} =\{(a, b): \mathrm{a} $ is sister of $\mathrm{b}\}$ is the empty relation and $\mathrm{R} ^{\prime}=\{(a, b)$ $:$ the difference between heights of $\mathrm{a}$ and $\mathrm{b}$ is less than $3\,\mathrm{meters}$ $\}$ is the universal relation.
since the school is boys school, no student of the school can be sister of any student of the school. Hence, $\mathrm{R} =\phi,$ showing that $\mathrm{R}$ is the empty relation. It is also obvious that the difference between heights of any two students of the school has to be less than $3\,\mathrm{meters}$. This shows that $\mathrm{R}^{\prime}=\mathrm{A} \times \mathrm{A}$ is the universal relation.
Let $A =\{2,3,4\}$ and $B =\{8,9,12\}$. Then the number of elements in the relation $R=\left\{\left(\left(a_1, b_1\right),\left(a_2, b_2\right)\right) \in(A \times B, A \times B): a_1\right.$ divides $b_2$ and $a_2$ divides $\left.b_1\right\}$ is:
Let $S$ be the set of all real numbers. Then the relation $R = \{(a, b) : 1 + ab > 0\}$ on $S$ is
Let $L$ be the set of all lines in $XY$ plane and $R$ be the relation in $L$ defined as $R =\{\left( L _{1}, L _{2}\right): L _{1} $ is parallel to $L _{2}\} .$ Show that $R$ is an equivalence relation. Find the set of all lines related to the line $y=2 x+4$
If $R$ is an equivalence relation on a set $A$, then ${R^{ - 1}}$ is
The relation $R$ defined in $N$ as $aRb \Leftrightarrow b$ is divisible by $a$ is