मान लीजिए कि $A$ किसी बालकों के स्कूल के सभी विद्यार्थियों का समुच्चय है। दर्शाइए कि $R =\{(a, b): a, b$ की बहन है $\}$ द्वारा प्रद्त संबंध एक रिक्त संबंध है तथा $R ^{\prime}=\{(a, b)$ $:$ $a$ तथा $b$ की ऊँचाईयों का अंतर $3$ मीटर से कम है $\}$ द्वारा प्रदत्त संबंध एक सार्वत्रिक संबंध है।
since the school is boys school, no student of the school can be sister of any student of the school. Hence, $\mathrm{R} =\phi,$ showing that $\mathrm{R}$ is the empty relation. It is also obvious that the difference between heights of any two students of the school has to be less than $3\,\mathrm{meters}$. This shows that $\mathrm{R}^{\prime}=\mathrm{A} \times \mathrm{A}$ is the universal relation.
सिद्ध कीजिए कि समुच्चय $\{1,2,3\}$ में $(1,2)$ तथा $(2,1)$ को अन्तर्विष्ट करने वाले तुल्यता संबंधों की संख्या $2$ है।
सिद्ध कीजिए कि $R$ में $R =\{(a, b): a \leq b\}$, द्वारा परिभाषित संबंध $R$ स्वतुल्य तथा संक्रामक है किंतु सममित नहीं है।
$R, \{11, 12, 13\}$ से $ \{8, 10, 12\}$ में संबंध $y = x - 3$ के द्वारा परिभाषित है तब ${R^{ - 1}}$ है
$x \equiv 3$ $(mod 7), $ $x \in Z,$ का समुच्चय हल है
माना $\mathrm{A}=\{2,3,4\}$ तथा $\mathrm{B}=\{8,9,12\}$ हैं। तो संबंध $\mathrm{R}=\left\{\left(\left(\mathrm{a}_1, \mathrm{~b}_1\right),\left(\mathrm{a}_2, \mathrm{~b}_2\right)\right) \in(\mathrm{A} \times \mathrm{B}, \mathrm{A} \times \mathrm{B})\right.$ : $a_1, b_2$ को विभाजित करता है तथा $a_2, b_1$ को विभाजित करता है $\}$ में अवयवों की संख्या हैं :