ધારો કે છોકરાઓની એક શાળાના બધા જ વિદ્યાર્થીઓનો ગણ $\mathrm{A}$ છે. સાબિત કરો કે ગણ $A$ પરનો સંબંધ $\mathrm{R} =\{(a, b): \mathrm{a} $ એ $\mathrm{b}$ ની બહેન છે $\}$રિક્ત સંબંધ છે અને $\mathrm{R} ^{\prime}=\{(a, b)$ $: \mathrm{a}$ અને $\mathrm{b}$ વચ્ચેની ઊંચાઈનો તફાવત $3$ મીટર કરતાં ઓછો છે. $\}$ એ સાર્વત્રિક ગણ છે.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

since the school is boys school, no student of the school can be sister of any student of the school. Hence, $\mathrm{R} =\phi,$ showing that $\mathrm{R}$ is the empty relation. It is also obvious that the difference between heights of any two students of the school has to be less than $3\,\mathrm{meters}$. This shows that $\mathrm{R}^{\prime}=\mathrm{A} \times \mathrm{A}$ is the universal relation.

Similar Questions

ધારો કે ગણ $A = A _{1} \cup A _{2} \cup \ldots \cup A _{k}$ છે. જ્યાં $i \neq j, 1 \leq i, j \leq k$ માટે $A _{i} \cap A _{i}=\phi$ છે. $A$ થી $A$ પરનો સંબંધ $R$ એ $R =\left\{(x, y): y \in A _{i}\right.$ તો અને તો જ $\left.x \in A _{i}, 1 \leq i \leq k\right\}$ પ્રમાણે વ્યાખ્યાયિત કરો.તો $R$ એ :

  • [JEE MAIN 2022]

જો $A=\{1,2,3, \ldots . . . .100\}$. જો $R$ એ સંબંધ $A$ પર છે. તથા $(x, y) \in R$ થી વ્યાખાયિત છે, જો અને તો જ $2 x=3 y$. જો $R_1$ એ $A$ પર સંમિત સંબંધ હોય તો $R \subset$ $R_1$ અને $R_1$ ના ઘટકોની સંખ્યા $n$ છે. તો $n$ ની ન્યુનત્તમ કિંમત મેળવો.

  • [JEE MAIN 2024]

જો $r$ એ $R$ થી $R$ પરનો સંબંધ વ્યાખ્યાયિત હોય $r$ = $\left\{ {\left( {x,y} \right)\,|\,x,\,y\, \in \,R} \right.$ અને $xy$ એ અસમેય સંખ્યા  છે $\}$ , હોય તો સંબંધ $r$ એ 

$R$ એ વાસ્તવિક સંખ્યા પરનો સંબંધ છે કે જેમાં $nm \ge 0$ હોય તો $R$ એ  . . .  

સાબિત કરો કે ગણ $\{1,2,3\}$ પર વ્યાખ્યાયિત સંબંધ $R =\{(1,1),\,(2,2),$ $(3,3)$, $(1,2)$, $(2,3)\}$ એ સ્વવાચક સંબંધ છે, પરંતુ તે સંમિત કે પરંપરિત સંબંધ નથી.