Show that the relation $R$ in the set $\{1,2,3\}$ given by $R =\{(1,1),\,(2,2),$ $(3,3)$, $(1,2)$, $(2,3)\}$ is reflexive but neither symmetric nor transitive.
$R$ is reflexive, since $(1,1),\,(2,2)$ and $(3,3)$ lie in $R$. Also, $R$ is not symmetric, as $(1,2)$ $\in R$ but $(2,1)$ $\notin R$. Similarly, $R$ is not transitive, as $(1,2)$ $\in R$ and $(2,3)$ $\in R$ but $(1,3)$ $\notin R$.
Let $A=\{1,2,3,4\}$ and $R$ be a relation on the set $A \times A$ defined by $R=\{((a, b),(c, d)): 2 a+3 b=4 c+5 d\}$. Then the number of elements in $R$ is:
Determine whether each of the following relations are reflexive, symmetric and transitive:
Relation $R$ in the set $A$ of human beings in a town at a particular time given by
$R =\{(x, y): x $ is father of $y\}$
Given a non empty set $X$, consider $P ( X )$ which is the set of all subsets of $X$.
Define the relation $R$ in $P(X)$ as follows :
For subsets $A,\, B$ in $P(X),$ $ARB$ if and only if $A \subset B .$ Is $R$ an equivalence relation on $P ( X ) ?$ Justify your answer.
Let $I$ be the set of positve integers. $R$ is a relation on the set $I$ given by $R =\left\{ {\left( {a,b} \right) \in I \times I\,|\,\,{{\log }_2}\left( {\frac{a}{b}} \right)} \right.$ is a non-negative integer$\}$, then $R$ is
Let $R$ be a relation on the set $N$ be defined by $\{(x, y)| x, y \in N, 2x + y = 41\}$. Then $R$ is