Show that the relation $R$ in the set $\{1,2,3\}$ given by $R =\{(1,1),\,(2,2),$ $(3,3)$, $(1,2)$, $(2,3)\}$ is reflexive but neither symmetric nor transitive.
$R$ is reflexive, since $(1,1),\,(2,2)$ and $(3,3)$ lie in $R$. Also, $R$ is not symmetric, as $(1,2)$ $\in R$ but $(2,1)$ $\notin R$. Similarly, $R$ is not transitive, as $(1,2)$ $\in R$ and $(2,3)$ $\in R$ but $(1,3)$ $\notin R$.
Let $A$ be the non-void set of the children in a family. The relation $'x$ is a brother of $y'$ on $A$ is
Let $A=\{1,2,3,4\}$ and $R$ be a relation on the set $A \times A$ defined by $R=\{((a, b),(c, d)): 2 a+3 b=4 c+5 d\}$. Then the number of elements in $R$ is:
Show that the relation $R$ defined in the set A of all triangles as $R =\left\{\left( T _{1},\, T _{2}\right):\, T _{1}\right.$ is similar to $\left. T _{2}\right\}$, is equivalence relation. Consider three right angle triangles $T _{1}$ with sides $3,\,4,\,5, \,T _{2}$ with sides $5,\,12\,,13 $ and $T _{3}$ with sides $6,\,8,\,10 .$ Which triangles among $T _{1},\, T _{2}$ and $T _{3}$ are related?
Let $R$ and $S$ be two non-void relations on a set $A$. Which of the following statements is false
Let $A = \{a, b, c\}$ and $B = \{1, 2\}$. Consider a relation $R$ defined from set $A$ to set $B$. Then $R$ is equal to set