- Home
- Standard 12
- Mathematics
1.Relation and Function
easy
Show that the relation $R$ in the set $\{1,2,3\}$ given by $R =\{(1,1),\,(2,2),$ $(3,3)$, $(1,2)$, $(2,3)\}$ is reflexive but neither symmetric nor transitive.
Option A
Option B
Option C
Option D
Solution
$R$ is reflexive, since $(1,1),\,(2,2)$ and $(3,3)$ lie in $R$. Also, $R$ is not symmetric, as $(1,2)$ $\in R$ but $(2,1)$ $\notin R$. Similarly, $R$ is not transitive, as $(1,2)$ $\in R$ and $(2,3)$ $\in R$ but $(1,3)$ $\notin R$.
Standard 12
Mathematics