Let $R$ be the relation in the set $N$ given by $R =\{(a,\, b)\,:\, a=b-2,\, b>6\} .$ Choose the correct answer.
$(2,4) \in R$
$(3,8) \in R$
$(6,8)\in R$
$(8,7) \in R$
Let $N$ be the set of natural numbers and a relation $R$ on $N$ be defined by $R=\left\{(x, y) \in N \times N: x^{3}-3 x^{2} y-x y^{2}+3 y^{3}=0\right\} .$ Then the relation $R$ is:
Let $\mathrm{A}=\{1,2,3,4\}$ and $\mathrm{R}=\{(1,2),(2,3),(1,4)\}$ be a relation on $\mathrm{A}$. Let $\mathrm{S}$ be the equivalence relation on $A$ such that $\mathrm{R} \subset \mathrm{S}$ and the number of elements in $\mathrm{S}$ is $\mathrm{n}$. Then, the minimum value of $\mathrm{n}$ is...............
Let $R$ be a relation over the set $N × N$ and it is defined by $(a,\,b)R(c,\,d) \Rightarrow a + d = b + c.$ Then $R$ is
Let $R$ be the relation defined in the set $A=\{1,2,3,4,5,6,7\}$ by $R =\{(a, b):$ both $a$ and $b$ are either odd or even $\} .$ Show that $R$ is an equivalence relation. Further, show that all the elements of the subset $ \{1,3,5,7\}$ are related to each other and all the elements of the subset $\{2,4,6\}$ are related to each other, but no element of the subset $\{1,3,5,7\}$ is related to any element of the subset $\{2,4,6\} .$
Let $X =\{1,2,3,4,5,6,7,8,9\} .$ Let $R _{1}$ be a relation in $X$ given by $R _{1}=\{(x, y): x-y$ is divisible by $3\}$ and $R _{2}$ be another relation on $X$ given by ${R_2} = \{ (x,y):\{ x,y\} \subset \{ 1,4,7\} \} $ or $\{x, y\} \subset\{2,5,8\} $ or $\{x, y\} \subset\{3,6,9\}\} .$ Show that $R _{1}= R _{2}$.