સંબંધ $R$ એ ગણ $N$ પર $R =\{(a,\, b)\,:\, a=b-2,\, b>6\} $ દ્વારા આપેલ છે.
$(2,4) \in R$
$(3,8) \in R$
$(6,8)\in R$
$(8,7) \in R$
જો $R = \{(1, 3), (2, 2), (3, 2)\}$ અને $S = \{(2, 1), (3, 2), (2, 3)\}$ એ ગણ $A = \{1, 2, 3\} $પરના સંબંધ હોય તો $RoS =$
સંબંધો $S =\left\{( a , b ): a , b \in R -\{0\}, 2+\frac{ a }{ b } > 0\right\}$ અને $T =\left\{( a , b ): a , b \in R , a ^2- b ^2 \in Z \right\}$, માંથી
ગણ $A\, = \,\{ x\,:\,\left| x \right|\, < \,3,\,x\, \in Z\} $ કે જ્યાં $Z$ એ પૃણાંક સંખ્યા નો ગણ છે ,તેના પરનો સંબંધ $R= \{(x, y) : y = \left| x \right|, x \ne - 1\}$ આપેલ હોય તો $R$ ના ઘાતગણમાં રહેલ સભ્ય સંખ્યા મેળવો.
સંબંધ $R$ એ ગણ $A$ પરનો વિસંમિત સંબંધ થવા માટે $(a,\,b) \in R \Rightarrow (b,\,a) \in R$ એ .
જો $R = \{ (3,\,3),\;(6,\;6),\;(9,\,9),\;(12,\,12),\;(6,\,12),\;(3,\,9),(3,\,12),\,(3,\,6)\} $ એ ગણ $A = \{ 3,\,6,\,9,\,12\} $ પરનો સંબંધ આપેલ હોય તો સંબંધ $R$ એ . . . . છે.