$A, B$ અને $C$ ત્રણ ગણું છે. જો $A \in B$અને $B \subset C$ તો $A$ $\subset$ $C$ સાચું છે ? જો તમારો ઉત્તર ‘ના' હોય, તો ઉદાહરણ આપો.
No. Let $A=\{1\}, B=\{\{1\}, 2\}$ and $C=\{\{1\}, 2,3\} .$ Here $A \in B$ as $A=\{1\}$ and $B \subset C$. But $A \not\subset C$ as $1 \in A$ and $1 \notin C$
Note that an element of a set can never be a subset of itself.
ગણ છે, $\phi, A=\{1,3\}, B=\{1,5,9\}, C=\{1,3,5,7,9\}$ આપેલા છે.
નીચે દર્શાવેલી દરેક ગણની જોડીની વચ્ચે સંજ્ઞા $\subset$ અથવા $ \not\subset $ સમાવિષ્ટ કરો :
$\phi \,....\,B$ $A \,....\,B$ $A\,....\,C$ $B\,....\,C$
$A=\{a, e, i, o, u\}$ અને $B=\{a, i, u\}$ છે. બતાવો કે $A \cup B=A$.
$A=\{1,2,\{3,4\}, 5\}$ છે. વિધાન સત્ય છે કે અસત્ય છે ? શા માટે ? : $1 \in A$
ગણને યાદીની રીતે લખો : $\mathrm{E} = \mathrm{TRIGONOMETRY}$ શબ્દના મુળાક્ષરોનો ગણ
$A=\{1,3,5\}, B=\{2,4,6\}$ અને $C=\{0,2,4,6,8\},$ આપેલ ગણ છે. આ ત્રણ ગણ $A, B$ અને $C$ માટે નીચેનામાંથી કયા ગણને સાર્વત્રિક ગણ તરીકે લઈ શકાય. $\{0,1,2,3,4,5,6,7,8,9,10\}$