मान लीजिए कि $A$ और $B$ दो समुच्चय हैं, जहाँ $n( A )=3$ और $n( B )=2 .$ यदि $(x, 1),$ $(y, 2),(z, 1), A \times B$ में हैं, तो $A$ और $B ,$ को ज्ञात कीजिए, जहाँ $x, y$ और $=$ भिन्न-भिन्न अवयव हैं।
It is given that $n(A)=3$ and $n(B)=2 ;$ and $(x, 1),(y, 2),(z, 1)$ are in $A \times B$
We know that
$A=$ Set of first elements of the ordered pair elements of $A \times B$
$B =$ Set of second elements of the ordered pair elements of $A \times B$
$\therefore x, y,$ and $z$ are the elements of $A ;$ and $1$ and $2$ are the elements of $B$
Since $n(A)=3$ and $n(B)=2$
It is clear that $A=\{x, y, z\}$ and $B=\{1,2\}$
यदि $A = \{1, 2, 4\}, B = \{2, 4, 5\}, C = \{2, 5\},$ तब $ (A -B)× (B -C)$ है
मान लीजिए कि $A =\{1,2,3\}, B =\{3,4\}$ और $C =\{4,5,6\} .$ निम्नलिखित ज्ञात कीजिए
$(A \times B) \cap(A \times C)$
यदि $A = \{ a,\,b\} ,\,B = \{ c,\,d\} ,\,C = \{ d,\,e\} ,\,$ तब $\{ (a,\,c),\,(a,\,d),\,(a,\,e),\,(b,\,c),\,(b,\,d),\,(b,\,e)\} $ बराबर है
यदि $(x+1, y-2)=(3,1),$ तो $x$ और $y$ के मान ज्ञात कीजिए
यदि $P =\{a, b, c\}$ और $Q =\{r\},$ तो $P \times Q$ तथा $Q \times P$ ज्ञात कीजिए। क्या दोनों कार्तीय गुणन समान हैं ?