यदि $P =\{a, b, c\}$ और $Q =\{r\},$ तो $P \times Q$ तथा $Q \times P$ ज्ञात कीजिए। क्या दोनों कार्तीय गुणन समान हैं ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

By the definition of the cartesian product.

$P \times Q =\{(a, r),(b, r),(c, r)\}$ and $Q \times P =\{(r, a),(r, b),(r, c)\}$

Since, by the definition of equality of ordered pairs, the pair $(a, r)$ is not equal to the pair $(r, a),$ we conclude that $P \times Q \neq Q \times P$

However, the number of elements in each set will be the same.

Similar Questions

कार्तीय गुणन $A \times A$ में $9$ अवयव हैं, जिनमें $(-1,0)$ तथा $(0,1)$ भी है। समुच्चय $A$ ज्ञात कीजिए तथा $A \times A$ के शेष अवयव भी ज्ञात कीजिए।

यदि समुच्चय $A$ में $3$ अवयव हैं तथा समुच्चय $B =\{3,4,5\},$ तो $( A \times B )$ में अवयवों की संख्या ज्ञात कीजिए।

यदि $A \times B =\{(p, q),(p, r),(m, q),(m, r)\},$ तो $A$ और $B$ को ज्ञात कीजिए।

यदि $A =\{-1,1\},$ तो $A \times A \times A$ ज्ञात कीजिए।

मान लीजिए कि $A =\{1,2,3\}, B =\{3,4\}$ और $C =\{4,5,6\} .$ निम्नलिखित ज्ञात कीजिए

$(A \times B) \cap(A \times C)$